На вопрос, почему спаренные электроны могут идти в ногу, а одиночные нет, отвечает небезызвестный принцип Паули. Все элементарные частицы разбиваются на два класса: фермионы и бозоны. К примеру, электрон (вне куперовской пары) - это фермион, а фотон - это бозон. Принцип запрета Паули, играющий в квантовой механике огромную роль, гласит: два фермиона не могут находиться в одном и том же квантовом состоянии. К бозонам этот принцип не относится - их в одном состоянии может быть сколько угодно. Это как в летнем лагере: дети (бозоны) спят в одной большой комнате, а воспитателям (фермионам) полагаются отдельные спальни. Конечно, у первых соблазн сбиться в кучу больше, чем у вторых. Поэтому неудивительно, что бозоны делают все заодно. И хотя куперовская пара состоит из двух фермионов, ведет она себя как бозон, для которого маршировать в ногу естественно. У сверхпроводимости есть смертельный враг - тепло. При достаточно высокой температуре - для каждого материала она своя - синхронность нарушается, и сверхпроводник теряет свое исключительное положение среди проводников. Этот переход напоминает превращение кристаллов льда в жидкую воду и называется фазовым переходом. Четыре года спустя после публикации теории БКШ американский физик японского происхождения Йоитиро Намбу заметил, что ее положения вполне можно применить к нарушению симметрии в физике элементарных частиц. Только что произошел Большой взрыв, Вселенная расширяется, температура падает, и, возможно, происходит фазовый переход: бозоны вдруг согласовывают свои действия, и неорганизованная толпа разбивается на группы. За это выдающееся открытие в 2008 г. Намбу была присуждена Нобелевская премия. История получила продолжение. В 1964 г. британский физик Питер Хиггс придумал такой тип бозонов, которые своей массой были обязаны спонтанному нарушению симметрии, его особой разновидности. Кроме того, получив массу сам, этот бозон наделял массой и другие частицы. Хотя его в итоге назвали в честь Хиггса, примерно в то же время независимо были предложены и другие похожие механизмы. Отметим здесь работу Джеральда Гуральника, К. Ричарда Хагена и Тома Киббла, а также вклад Франсуа Энглера и Роберта Браута. В квантовой физике энергия поля определяется потенциалом, в котором оно «живет». Потенциал - это что-то вроде набора холмов, ям и склонов. Вместе они диктуют, как меняется энергия в зависимости от положения. Например, в скалистом потенциале резкие скачки энергии неизбежны в отличие от потенциала типа «плато». А Хиггс заставил свой бозон поселиться в особом потенциале - в форме дна бутылки от шампанского. Причем при высоких температурах бозон обитает в центральной части, а при низких - с краю. Когда температура падает ниже критической, бозон скатывается с вершины (ложный вакуум) вниз к краю (истинный вакуум) и приходит в основное состояние. Случайное место, которое бозон займет на окружности (дно бутылки с шампанским, помните?), определит вакуум во всем пространстве. (Кстати, на это место математически указывает фаза, особый внутренний параметр, «смотрящий» под разными углами - как стрелки в часах.) Именно поэтому вакуум получается единым для всех частиц, и каждая из них лишена возможности выбирать ту фазу, которая ей заблагорассудится. В результате первоначальная симметрия случайно, или, как говорят, спонтанно, нарушается. — 33 —
|