По фотографиям можно проследить некоторые особенности скачкообразного движения капли на поверхности кристалла. Но прежде чем это сделать — немного теории. Допустим, что жидкая капля, радиус которой R , падает на плоскую поверхность под малым углом ? между поверхностью и направлением скорости. Если бы капля обладала свойствами абсолютно упругого тела, т. е. без потерь энергии отражалась от поверхности кристалла по закону «угол падения равен углу отражения» и воздух не препятствовал ее полету, она скакала бы по его поверхности сколь угодно долго и длина скачка l оставалась бы неизменной. Эту длину легко вычислить. Воспользуемся обозначениями, которые указаны на рисунке. Очевидно, в направлении, параллельном поверхности кристалла, капля, имея скорость ? 1= ? 0cos? , будет лететь в течение всего того времени, которое понадобится ей для того, чтобы в поле земного тяготения вначале подняться от поверхности на максимальную высоту, а затем с этой высоты спуститься на поверхность кристалла. Это время - ? = 2? 1/g В приведенных формулах мы воспользовались тем, что ? мало. Только в этом случае можно считать, что cos? ? 1 , a sin? ? ? . Так было бы, если бы выполнялись обусловленные идеальные обстоятельства. В действительности капля, прыгая по твердой поверхности, теряет энергию. Во-первых, полету препятствует воздух и часть энергии расходуется на преодоление его сопротивления. Во-вторых, в момент удара капля вязко деформируется, а затем, оттолкнувшись от поверхности, восстанавливает свою форму. И на это необходима энергия. В-третьих, в каждой точке, где капля коснулась твердой поверхности, остается жидкое пятнышко. Его появление можно представить себе как отщепление от капли жидкой пластинки, т. е. появление двух свободных поверхностей жидкости, площадь каждой из которых равна площади оставленного пятнышка. При этом расходуется энергия Ws = 2а•S, где S — площадь пятнышка. Точно учесть все потери энергии скачущей капли — дело совсем не простое, так как они зависят от очень многого: скорости полета, массы капли, вязкости и поверхностного натяжения вещества капли. Величина этих потерь изменяется от скачка к скачку. Если сделать заведомо упрощающее предположение, что в каждом очередном скачке капля теряет одну и ту же энергию W, изменяя при этом массу незначительно, можно определить длину n -го скачка (l п) с помощью формулы, которая следует из предыдущей: — 96 —
|