Маленькое жидкое включение в монокристалле натриевой селитры движется по направлению к крупному включению и поглощается им Второй эпизод в фильме был еще интереснее. В нем тоже была заснята маленькая движущаяся капелька в кристалле, однако лампа в этом никакого участия не принимала. Опыт был задуман хитро. В непосредственной близости от маленькой капли, движение которой надо было наблюдать, находилась крупная капля неправильной формы. В процессе преобразования ее формы в более правильную уменьшалась поверхность, и значит выделялась некоторая энергия, которая ранее была связана с поверхностью, а затем превратилась в тепло. Вот эта уменьшающая свою поверхность капля играла роль источника тепла, по направлению к которому двигалась маленькая капля. В заснятом эпизоде маленькая капля движется к большой и сливается с ней. Успех опытов Леммлейна был предопределен удачным выбором объекта или, точнее, тем, что растворимость натриевой селитры в воде очень существенно меняется с изменением температуры. И поэтому даже незначительная разность температур между лобовой и тыльной стенками оказывается достаточной, чтобы движение капли можно было заметить за «удобное» время, а не за тысячи лет, например. Леммлейн был пионером, а после него появилось множество исследований, посвященных движению жидких капель в кристаллах. Быть может, любопытное явление — движение капель в кристалле — и не привлекло бы к себе внимания, если бы оно было подобно соловьиным трелям, которые, как известно, до сих пор в инженерной практике не применялись. Но оказалось, что движение капель можно использовать для решения многих практически важных задач. Назовем для примера две из них. Получение пресной воды из морской. В процессе замерзания морской воды образуются капли с повышенным содержанием соли. Если их изгнать из льда, оставшийся лед, свободный от капель, будет содержать соль в количестве меньшем, чем морская вода, т. е. окажется частично опресненным. Упрочнение льда. В условиях Крайнего Севера лед — строительный материал, и важно, чтобы он был прочным. Его прочность, однако, понижается из-за содержащихся в нем жидких капель. Надо освободиться от них, и тогда лед станет более прочным. Сделать в принципе это можно, заставив капли двигаться до тех пор, пока они не выйдут из льда. Процесс частичного освобождения льда от капель происходит и самопроизвольно. Глубинные слои льда ближе к воде более теплые, чем те, которые граничат с холодным воздухом, и, следовательно, капли соленой воды будут двигаться по направлению к воде. Вот почему глубинные слои льда оказываются и менее солеными и более прочными. — 94 —
|