Золото Древней Руси. Русская матрица - основа золотых пропорций

Страница: 123456789101112 ... 82

Рис. 2. "Вавилон" русской меры [4]

Продолжая изучение свойств "вавилонов", Б.А. Рыбаков нашел следующие закономерности, определяющие соотношения между саженями (рис. 3). Если возьмем половину длины наиболее распространенной мерной сажени 176,4/2 = 88,2 = А,
то следующие зависимости обусловливают нахождение совокупности всех, кроме трубной, саженей:
= 249,46 см

А 3 = 88,2 х 1,73205

= 152,76см

- простая (прямая) сажень;

А 4 = 88,2 х 2,00

= 176,4 см

- маховая, мерная сажень;

А 5 = 88,2 х 2,23607

= 197,21 см

- "сажень без чети" (царская);

А 6 = 88,2 х 2,44995

= 216,04 см

- косая (казенная) сажень;

А 8 = 88,2 х 2,82843

= 249,46 см

- великая сажень.

Здесь пропущена зависимость А 7 = 88,2 х 2,64575 = 233,4 см - сажень греческая, которая также не содержится в таблице 1, но часто встречается при обмерах древних сооружений, а позже будет представлена в системе А.А. Пилецкого.

Все операции, предлагаемые Б.А. Рыбаковым, очень хорошо описывают найденную им структуру получения длин саженей и имеют три существенных недостатка:
- не соотносятся между собой по золотому сечению (Б.А. Рыбаков отмечает, а далее будет показано, что соотношение между ними близко золотому числу Ф.);
- древние зодчие не знали сантиметров и миллиметров и, более того, не имели представления о дробях и корнях (деление чисел и дроби до XV в. было известно только ученым математикам), а потому математическими методами для восстановления саженей пользоваться не могли;
- метод не объясняет, почему возникла необходимость в использовании при замере объектов нескольких длин-саженей.

Рис. 3. Геометрическая система древнеруссских саженей [4]

Поскольку метод "вавилонов", как свидетельствуют находки, применялся древними мастерами для пропорционирования саженей по некоторым эталонам, то естественно, что они пользовались им без знания дробей и извлечения корня. Не исключено, однако, что они использовали способы восстановления размеров по любой сохранившейся сажени и даже при отсутствии эталона - по любому прутку с размером, близким к пропорции, человека, например построением треугольных фигур.

Этот метод можно назвать методом "наугольников" (наугольник - плотницкий инструмент треугольной формы [5]). Он заключается в следующем (рис 4): допустим, что эталонная сажень не сохранилась и ее требуется восстановить. Тогда берется деревянный пруток длиной, допустим, в рост плотника. Возьмем для примера рост плотника 172 см, что почти соответствует мерной (маховой) сажени, и примем его за базисную длину. Если три прутка данной длины сложить равнобедренным наугольником, то высота в нем будет равна 148,96 см, что по структуре соответствует сажени простой, да и по длине близко к ней. Если к центру мерной сажени под прямым углом приставить другую мерную сажень и соединить их свободные концы длинными прутками, то получим равносторонний наугольник, длинные стороны которого равны 192,30 см, а это аналог "сажени без чети". Возьмем две полученные простые сажени, соединим их концы под прямым углом и, соединив свободные концы длинным прутком, получим расстояние, равное 210,66 см - аналог сажени косой. Если такую же операцию проведем мерными саженями, получим длину 243,24 см - по назначению аналог сажени великой. И последняя сажень - трубная. Последняя получается, когда к центру косой сажени под прямым углом приставляется сажень простая. При соединении их свободных концов получают равносторонний наугольник, две стороны которого будут иметь длину 182,44 см, что как раз и является аналогом длины трубной сажени.

— 7 —
Страница: 123456789101112 ... 82