Рассмотрим теперь логические системы. От простого набора теорем логическая система отличается так же, как готовое здание от груды кирпичей: в логической системе каждая последующая теорема опирается на предыдущую. Пойа отмечал, что заслуга Евклида состояла не в коллекционировании геометрических фактов, а в их логическом упорядочении. Если бы он просто свалил их в кучу, то прославился бы не больше, чем автор любого учебника по математике для средней школы. Чтобы проиллюстрировать способы математических доказательств, мы приведём пример развёрнутой логической системы. Лемма 1. Все лошади имеют одинаковую масть (докажем по индукции). Доказательство. Очевидно, что одна лошадь имеет одинаковую масть. Обозначим через P (k ) предположение, что k лошадей имеют одинаковую масть, и покажем, что из такого предположения вытекает, что k + 1 лошадей имеют ту же масть. Возьмём множество, состоящее из k + 1 лошадей, и удалим из него одну лошадь, тогда оставшиеся k лошадей по предположению имеют одинаковую масть. Вернём удалённую лошадь в множество, а вместо неё удалим другую. Получится снова табун из k лошадей. Согласно предположению, все они одной масти. Так мы переберём все k + 1 множеств, в каждом по k лошадей. Отсюда следует, что все лошади одной масти, т. е. предположение, что P (k ) влечёт за собой P (k + 1). Но ранее мы уже показали, что предположение Р (1) выполняется всегда, значит, Р справедливо для любого k и все лошади имеют одинаковую масть. Следствие I. Все предметы имеют одинаковую окраску. Доказательство. В доказательстве леммы 1 никак не используется конкретная природа рассматриваемых объектов. Поэтому в утверждений «если Х — лошадь, то все Х имеют одинаковую окраску» можно заменить «лошадь» на «нечто» и тем самым доказать следствие. (Можно, кстати, заменить «нечто» на «ничто» без нарушения справедливости утверждения, но этого мы доказывать не будем.) Следствие II. Все предметы белого цвета. Доказательство. Если утверждение справедливо для всех X , то при подстановке любого конкретного Х оно сохраняет свою справедливость. В частности, если Х — слон, то все слоны одинакового цвета. Аксиоматически достоверным является существование белых слонов (см. Марк Твен, Похищение белого слона). Следовательно, все слоны белого цвета. Тогда из следствия I вытекает следствие II, что и требовалось доказать! — 108 —
|