Будет ли это всегда так? Я не думаю. Такие многокомпонентные сплавы, может быть, были найдены случайно, но вероятнее — интуитивным «нюхом» талантливого ученого, который, как искусный повар, умеет готовить вкуснее других. Если есть интуиция, значит, есть и закономерность. Задача науки — выявить эти закономерности, но метод решения таких сложных проблем до сих пор не найден, и это, несомненно, одна из проблем будущего. Существует еще одна, менее известная проблема, которая в ближайшем будущем представит большой интерес, — она пока что тоже решается эмпирически. Это — создание сверхпроводящего сплава с критической температурой, близкой к комнатной, и с достаточно высоким критическим магнитным полем, то есть полем, которое разрешает эту сверхпроводимость. Как известно, в сверхпроводниках электрический ток течет без потерь, поэтому уже сейчас сверхпроводимостью начинают широко пользоваться для создания высокодобротных радиоколебательных систем, для катушек, создающих сильное магнитное поле, для конструирования малогабаритных запоминающих устройств в электронных счетно-решающих машинах. Но главное затруднение практического использования сверхпроводимости в том, что все эти устройства работают при очень низкой температуре, температуре жидкого гелия (4,2° К). Поэтому наибольшее практическое значение имело бы открытие материала, обладающего сверхпроводимостью при комнатной температуре. Это вызвало бы революцию в современной электротехнике, так как позволило бы вести передачу электроэнергии без потерь. Но пока что теория указывает, что сверхпроводимость в чистом металле не может существовать при температуре выше температуры Дебая, и, следовательно, в настоящее время открытие такого материала можно ждать только в сплавах, теория свойств сверхпроводимости которых полностью еще не понята. Тут тоже встает проблема эмпирического изучения многокомпонентного соединения, о котором я уже говорил. Одна из крупнейших задач, стоящих перед физикой твердого тела, — это создание полимеров с заданными свойствами. Полимеры в живой природе всегда являются основным «строительным материалом», который выполняет всевозможные функции. Наш век не только будет веком использования атомной энергии, но и веком, когда человечество научится приготовлять полимеры, а также широко использовать их в жизни как основной «строительный материал». Разнообразие полимеров беспредельно, их может быть даже больше, чем сплавов. Механические, электрические, магнитные свойства полимеров так же разнообразны. Перед наукой будет стоять задача создания полимеров с заданными свойствами. Тут эмпиризм будет недостаточно эффективным, как и в примере со сплавами. Возможно, что из-за большой регулярности в строении полимеров тут скорее, чем для сплавов, удастся найти теоретическое обобщение, которое избавит исследовательские работы по отысканию полимеров с заданными свойствами от эмпирического пути. — 224 —
|