Эксперимент, Теория, Практика. Статьи, Выступления

Страница: 1 ... 218219220221222223224225226227228 ... 239

Имеется ряд важнейших научных и научно-технических проблем, которые мы сейчас не можем решить из-за ограниченных методических возможностей, которыми мы располагаем. Эти методические возможности могут быть ограничены либо комплексностью самого явления, которое приводит к неразрешимой по своей сложности математической задаче, либо ограничены той измерительной методикой, которой мы располагаем; она может быть недостаточно чувствительна и недостаточно точна, или вообще изучаемое явление может не поддаваться измерениям.

Поэтому успех решения ряда проблем определяется расширением наших методических возможностей. В основном успех тут определяется изобретением новых методов наблюдения, изобретением измерительной аппаратуры, работающей на новых принципах, и, наконец, изобретением методов теоретических и математических обобщений научного опыта.

Все эти изобретения можно рассматривать как своего рода научные открытия; крупнейшие из них делаются так же неожиданно и так же непредвиденно, как и научные открытия, и также являются проявлениями человеческого гения. Большие методические изобретения так же, как и научные открытия, могут привести к созданию целой научной области и привести к решению основных задач, стоящих перед наукой уже много времени. Как пример из прошлого можно указать на изобретение Ньютоном дифференциального исчисления или изобретение Гюйгенсом маятника часов.

Одним из таких крупнейших современных методических изобретений, которое сильно продвинуло ряд областей, является создание электронных кибернетических машин. Происходящее сейчас бурное развитие кибернетических машин дает возможность решения ряда задач большой сложности, которые еще недавно лежали за пределами доступности (быстрые и точные расчеты траекторий полетов космических кораблей, расчеты структур атомов, молекул, кристаллических решеток и ряд других проблем). Несомненно, электронно-кибернетические машины будут в ближайшем будущем интенсивно развиваться, и с их помощью будет решено еще много важных задач, которые лежали до сих пор за пределами досягаемости.

Сейчас я хочу обратить внимание на несколько важнейших задач, которые необходимо решить и иметь их теоретическое решение; но пока они столь сложны, что их приходится решать грубым эмпирическим или полуэмпирическим путем. Нужно помнить, что эмпиризм как метод научного искания еще далеко не изжил себя.

Применение эмпиризма в этих исследованиях обычно связано с трудоемким накоплением больших количеств опытных данных и с большой сложностью их систематизации и использования. Разберем как пример такого рода эмпирических исследований, которые часто производятся теперь, проблему создания вещества с определенными механическими свойствами — прочностью, жароустойчивостью, пластичностью и пр. Хорошо известно, что в области достижений предельных показателей в авиации, космонавтике, турбостроении прочность и жаропрочность материалов являются обычно главным ограничивающим фактором. Достаточно было бы поднять жаропрочность сплава на несколько сот градусов и предельную прочность — на 20—30%, и это дало бы возможность решить ряд новых технических задач. Однако несмотря на то, что все механические свойства металлов сейчас хорошо и быстро измеряются, количественной теории, связывающей эти свойства вещества с его химическим составом и физической структурой, пока нет, хотя природа сил между атомами хорошо известна. Математическая задача столь сложна, что даже не может быть сформулирована. Поэтому основной путь искания здесь — эмпиризм. Но нетрудно показать, что даже эмпиризм не может полностью решить эту задачу. Нам известно около 100 элементов, которые образуют сплавы. Положим, что описание новых свойств одного металла или сплава, его прочность, жаропрочность, упругость, электропроводность и т. д., занимает одну страницу. Для описания свойств самих элементов потребуется 100 страниц, для описания бинарных сплавов потребуется уже 10 тысяч страниц. Сплавы тройных систем уже займут миллион страниц. Легко видеть, что исследовать и систематически описать тройные сплавы является предельной возможностью. Таким образом, эмпирический метод изучения имеет свои естественные пределы. Изобретение кибернетических машин табуляторного типа, конечно, и тут тоже расширит наши возможности, но все же нужно признать, что проблема научного создания новых сплавов с заданными свойствами более чем из трех компонентов не разрешена. Но известно, что на практике уже используются сплавы из четырех компонентов или даже больше и такими сплавами уже были решены важные задачи.

— 223 —
Страница: 1 ... 218219220221222223224225226227228 ... 239