Хрупкие материалы по возможности не используются там, где они могут подвергнуться действию растяжений. Эти материалы являются хрупкими в первую очередь не потому, что имеют низкую прочность на разрыв,- это означало бы, что для их разрушения требуется небольшая сила, - а потому, что для их разрушения требуется только небольшая энергия. Технические и биологические материалы, которые используются в условиях растяжения и в этом смысле являются относительно безопасными, для образования новой поверхности при разрушении требуют значительно большей энергии. Другими словами, работа разрушения для них значительно (несравненно!) больше, чем в случае хрупких твердых тел. Для практически вязкого трещиностойкого материала величина работы разрушения обычно лежит в пределах 103-106 Дж/м2. Поэтому энергия, требуемая для разрушения сварочного железа или мягкой стали, может быть в миллион раз больше энергии, требуемой для разрушения в таком же поперечном сечении стекла или керамики, хотя величины статической прочности на разрыв этих материалов не сильно различаются. Поэтому таблица значений прочности на разрыв, подобная табл. 2, в случае если ее используют для выбора какого-то конкретного материала, может дезинформировать конструктора. По этой же причине классическая теория упругости, основанная главным образом на силах и напряжениях, которая старательно разрабатывалась в течение столетий - и еще более старательно преподавалась студентам, - сама по себе не может правильно предсказывать разрушение реальных материалов и конструкций. Таблица 4. Приближенные величины работы разрушения и прочности при растяжении некоторых распространенных материалов Вещество / Приближенное значение работы разрушения Дж/м2 / Приближенное (номинальное) значение прочности на разрыв МН/м2 Стекло, керамика / 1-10 / 170 Цемент, кирпич, камень / 3-40 / 4 Полиэфирные и эпоксидные смолы / 100 / 50 — 57 —
|