Число семь имеет уже одну только подобную часть, единицу. Восемь — три: восьмую, четвертую и половинную, т. е. единицу, два и четыре, но, сложенные вместе, они в сумме дают семь; след., восьми не составляют. Число девять имеет две части: девятую, т. е. единицу, и третью, т. е. три, но сложенные в сумму, он составляют число гораздо меньшее девяти, именно — четыре. Число деcять имеет три части: десятую — единицу, пятую — два и половинную — пять, которые, будучи сложены вместе, равняются восьми, а не десяти. Число одиннадцать имеет одну только часть — одиннадцатую, как семь — седьмую, пять — пятую и три — третью. Но число двенадцать, если сложить подобные его части в одну сумму, не остается тем же числом, а возрастает: части в своей сумме составляют число большее двенадцати, достигая до шестнадцати. Именно — число двенадцать имеет пять частей: двенадцатую, шестую, четвертую, третью и половинную; двенадцатая его часть — единица, шестая — два, четвертая — три, третья — четыре и половинная — есть, а один, два, три, четыре и шесть в сумме составляют шестнадцать. Словом сказать, в бесконечном ряду чисел встречается много таких, которые имеют или одну только подобную часть, как напр. три, пять и т. п., или много, но притом так, что эти части, будучи сложены в одну сумму, составляют число меньшее, как напр. восемь, девять и многие др., или большее, как напр. двенадцать, восемнадцать и многие др. И таких чисел встречается гораздо больше в сравнении с теми, которые называются совершенными в виду того, что они составляются из своих, сложенных в одну сумму, частей. Так, после шести, мы встречаем еще число двадцать восемь, которое состоит из подобных же частей; именно — оно имеет пять частей: двадцать восьмую, четырнадцатую, седьмую, четвертую и половинную, т. е. единицу, два, четыре, семь и четырнадцать, которые, сложенные в сумму, дают двадцать восемь. И чем дальше вперед идет порядок чисел, тем чрез большие промежутки встречаются числа, которые, если сложить их части в одну сумму, равны самими себе и называются совершенными. Те же числа, части которых, сложенные в сумму, не дают того числа, частями коего он служат, называются несовершенными, а числа, части которых превышают [свое число], называются более, чем совершенными. Таким образом, Бог произвел дела творения в совершенное число дней, т. е. шестеричное: и соверши , написано, Бог в день шестый дела своя, яже сотвори (Быт. II, 2). Но это число заслуживает большего нашего внимания, если мы всмотримся в порядок самых этих дел. Именно, как это число по своим частям возрастает постепенно в трехчленное (in trigonium), ибо числа — один, два и три следуют одно за другим так, что между ними нельзя вставить никакого другого, и представляют каждое части шестеричного числа, из коих состоит оно, один шестую, два — третью и три — половинную: так в один день сотворен свет, а в следующие два — наш настоящий мир, в один день — высшая его часть, т. е. твердь, а в другой — низшая, земля и море; но высшую часть [Бог] не наполнил никакими родами телесной пищи, так как Он не намерен был там помещать тела, нуждающиеся в подобного рода восстановлении, низшую же часть, которую Он намерен был украсить соответствующими ей животными, наперед богато снабдил необходимыми для них родами пищи. В остальные три дня созданы те видимые [твари], которые внутри мира, т. е. внутри видимой, устроенной из всех элементов, вселенной обладают соответствующими им движениями, именно — сначала светила на тверди, так как твердь сотворена раньше, а затем в низшей области — животные, как требовал того их порядок, т. е. в один день — водные, а в другой — земные. Впрочем, никто не будет настолько безумен, чтобы осмелиться сказать, будто Бог не мог создать, если бы захотел, все и в один день, или, если бы захотел в два дня — в один духовную тварь, а в другой телесную, или — в один день небо со всем, что принадлежит ему, а в другой — землю со всем, что на ней находится, да и вообще — когда бы захотел, во сколько бы времени захотел и каким бы образом захотел: кто скажет, что Его воле могло что–нибудь противодействовать? — 307 —
|