Теория относительности для миллионов

Страница: 1 ... 5758596061626364656667 ... 78

Математики говорят, что подобная поверхность «замкнута». Она, конечно, не безгранична. Подобно бесконечному евклидовому пространству, центр ее везде, периферии не существует. Эту «замкнутость», топологическое свойство такой поверхности, обитатели этой страны могут легко проверить. Один критерий уже упоминался: движение вокруг сферы во всех направлениях. Другой способ проверки состоял бы в окраске этой поверхности. Если бы житель этой страны, начав с какого-то места, стал рисовать все большие и большие окружности, он в конце концов заключил бы себя внутрь пятна на противоположной стороне сферы. Однако, если эта сфера велика и жители занимают небольшую часть ее, у них не будет возможности произвести подобные топологические испытания.

Эйнштейн предположил, что наше пространство является трехмерной «поверхностью» огромной гиперсферы (четырехмерной сферы). Время в его модели остается неискривленным; это прямая координата, уходящая назад в бесконечно далекое прошлое и простирающаяся бесконечно далеко вперед в будущее. Если эту модель представлять себе как четырехмерную пространственно-временную структуру, она больше напоминает гиперцилиндр, чем гиперсферу. По этой причине такую модель обычно называют моделью «цилиндрической Вселенной». В любой момент времени мы видим пространство как своего рода трехмерное поперечное сечение гиперцилиндра. Каждое поперечное сечение представляет собой поверхность гиперсферы.

Наша Галактика занимает только незначительную часть этой поверхности, так что пока еще нет возможности выполнить топологический эксперимент, который доказал бы ее замкнутость. Но принципиальная возможность доказать замкнутость существует. Установив достаточно мощный телескоп в каком-то направлении, можно сфокусировать его на определенной галактике, а затем, повернув телескоп в противоположную сторону, увидеть обратную сторону той же самой галактики. Если бы существовали космические корабли со скоростью, близкой к скорости света, то они могли бы описать круг по Вселенной, двигаясь в любом направлении по наиболее прямой линии, которая только возможна.

Вселенную нельзя «окрасить» в буквальном смысле этого слова, но можно сделать по существу то же самое, составляя сферические карты Вселенной все больших и больших размеров. Если картограф будет делать это достаточно долго, то он сможет обнаружить, что он оказался внутри той сферы, карту которой он составляет. Эта сфера будет становиться все меньше и меньше по мере того, как он продолжает свое занятие, подобно тому кругу, который уменьшается, когда житель Плосковии заключает себя внутрь пятна.

— 62 —
Страница: 1 ... 5758596061626364656667 ... 78