Квантовая теория. Революция в микромире

Страница: 1 ... 4849505152535455565758 ... 88

Поразительно, что в этих условиях Вернер Гейзенберг смог защитить свою диссертацию (1923), а еще более впечатляет, что в 1921-1922 годах был завершен опыта Штерна и Герлаха, который требовал значительных экономических затрат, однако позволил открыть спин электрона. (Спин — квантовое свойство частиц, не имеющее точного аналога в классической физике, которое можно объяснить, проводя аналогии с вращением частицы вокруг себя).

Все немецкие научные учреждения пережили после войны тяжелый период. Планк как один из руководителей такого заведения приложил все усилия для того, чтобы сократить ущерб, наносимый кризисом немецкой науке. В качестве члена Академии наук вместе с Габером, Нернстом и другими учеными он контролировал работу Национального центра научной документации, миссия которого состояла в том, чтобы хранить по крайней мере один экземпляр любого иностранного научного документа, который мог оказаться важным. Также Планк проводил работу по получению для исследований внешнего финансирования. Средства приходили из самых разных источников — от Фонда Рокфеллера, который в итоге сделал пожертвование на полмиллиона долларов, японского предпринимателя Хаджиме Хоши, американской компании General Electric.

Удивительно, что в обширной переписке того времени между учеными (Планком, Эйнштейном, Борном, Зоммерфельдом и другими) часто упоминаются затруднения, испытываемые наукой вследствие кризиса, но при этом практически никто не говорит о личных проблемах, которых, несомненно, у каждого было немало.

Планк с воодушевлением принимает волновое уравнение Шрёдингера

Между 1925 и 1926 годами теоретическая физика пережила период интенсивного развития. Вернер Гейзенберг и Эрвин Шрёдингер предложили две основные формулировки квантовой механики: матричную механику и волновое уравнение.

В июне 1925 года Вернер Гейзенберг, которому было всего 23 года, разработал правила рассчета атомных спектров. Макс Борн, с которым они вместе работали в Гёттингене, нашел в этих правилах сходство с матричной алгеброй, отсюда и произошло название матричной механики, которым обозначали данную теорию. Идеи Гейзенберга имеют философское концептуальное обоснование. В рамках эмпирической традиции, к которой Гейзенберг относил и Эйнштейна, имеет смысл только то, что напрямую воспринимается чувствами, то есть то, что можно измерить. Поэтому Гейзенберг решил забыть об орбитах электронов и искать правила, выводимые из того, что можно было наблюдать, — из спектров.

Гейзенберг сформулировал свою матричную механику, отталкиваясь от идеи, что только измеряемые единицы должны быть частью механики атомных систем. Спектроскописты могли измерить длину волны спектральных линий и их интенсивность. Ученый разработал правила для расчета частот этих линий и их интенсивности. Когда Гейзенберг рассказал Эйнштейну, что именно у него он взял идею использовать только наблюдаемые величины, ученый, за это время отошедший от позитивизма, очень удивился. С помощью своих правил Гейзенберг мог вычислить уровень энергии гармонического осциллятора (представляющего собой систему, которая при выведении из состояния равновесия возвращается к нему, совершая синусоидальные колебания, как в случае с грузом, подвешенным на пружине на рисунке на следующей странице).

— 53 —
Страница: 1 ... 4849505152535455565758 ... 88