Под полнотой информации здесь, имеется в виду наличие достаточно многочисленных групп индивидов, четко и однозначно классифицированных по заданной системе критериев. В этом случае построение решающего правила сводится к применению какого-либо алгоритма автоматической классификации, приспособленного к работе с заданными классами. Если же критериальные классы представлены неполно - всего несколькими представителями, для которых при этом не всегда известны все значения необходимых параметров, - то возникает ситуация, требующая применения так называемых эвристических алгоритмов (более подробно о применяемых алгоритмах классификации см. кн.: Типология и классификация в социологических исследованиях. М., 1982). Остановимся на одном из методов распознавания, получившем применение в психодиагностике, — на семействе алгоритмов вычисления оценок (АВО), предложенном Ю. И. Журавлевым и его учениками (1978). Основную задачу распознавания образов можно сформулировать как задачу отнесения объекта 5 к одному или нескольким классам К1 К2,..., Кi на основе информации о классах I (K1), (К2),..., I (Кi), информации об объекте I(S) и предположения о близости объекта к классу. Другими словами, задачу распознавания можно сформулировать как задачу определения того, обладает ли объект определенными свойствами. В основе АВО лежит принцип частичной прецедентности: близость объекта к классу тем больше, чем больше частей в его описании «похожи» на соответствующие части в описаниях' объектов, чья принадлежность классу известна. Например, в одном из вариантов АВО (Зеличенко А. И., 1982) функция близости объекта S к классу К определяется так: (3.5.3) где - i-й объект, принадлежность которого к классу К уже известна; ai (S) - i-й элемент (параметр) в описании объекта; P1 - его вес; ?j - i-й порог. После того как вычислены Г(S1 K1,), ... , Г(S1 K1,) на основании некоторого решающего правила (зависящего от вектора параметров , принимается решение о принадлежности объекта к одному или нескольким классам К1, ..., К1 В задачах психодиагностики S- это испытуемый. Таким образом, каждый вариант АВО определяется набором значений параметров. В нашем случае- это векторы , . Если информация об объекте S представлена в виде I(S) = (а1,..., а2), то элемент вектора опорных множеств ?j(S) = аi, a ?j -j-й порог. В качестве примера решающего правила можно привести следующее (линейное пороговое решающее правило): — 108 —
|