Общая психодиагностика

Страница: 1 ... 100101102103104105106107108109110 ... 324

где Y- прогнозируемая переменная (критерий прогностической ва-лидности);

Xi - значение i-го тестового показателя из рассматриваемой бата­реи тестовых показателей;

?i, - значение весового коэффициента, указывающего, на сколько (в единицах стандартных отклонений) изменяется прогнозируемая переменная при изменении тестового показателя Xi.

Для составления указанного уравнения требуется произвести «уп­реждающее» измерение тестовых показателей по отношению к критериальному показателю Y, измерение которого производится по ис­течении некоторого отрезка времени T, называемого в прогнозиро­вании периодом упреждения.

Общая эффективность прогноза на основе регрессионного урав­нения оценивается с помощью подсчета коэффициента множествен­ной корреляции R2 (Суходольский Г. В., 1972) и последующей оценки его значимости по критерию Фишера:

(3.5.2)

где - эмпирическое значение статистики Фишера со степенями сво­боды V1 = k и У2 = N-k;

N— количество индивидов;

k - количество тестовых показателей.

Не следует забывать, что основой применения этой модели про­гноза является экстраполяция - предположение о том, что на новом отрезке времени T’ будут действовать те же тенденции связи пере­менных, что и на отрезке T, на котором прежде измерялись весовые коэффициенты ?i. Не следует также забывать, что корректность про­гноза обусловлена периодом упреждения: для больших (или меньших) T использование уравнения (3.5.1) может оказаться некорректным.

Прогностические возможности указанного метода ограничены однократностью измерения тестовых показателей .X1, Х2 ..., Xk. В силу однократности измерения этот метод оказывается эффективным опять-таки только по отношению к самым универсальным и статическим показателям (таким, например, как интегральные свойства темпера­мента или нервной системы), обеспечивающим очень грубый, веро­ятностный, приближенный прогноз.

В некоторых случаях эффективность этого метода может суще­ственно повыситься, если использовать хотя бы двукратное (с неболь­шим интервалом в две-три недели) измерение системы показателей Х1 Х2,..., Xk. Уже таким способом можно, например, учесть вклад фак­тора «усвоение знаний» в прогнозирование мотивационной вовлечен­ности (уровня интереса) студента в свою специальность. Повторное измерение (например, через месяц после начала обучения в вузе) по­зволяет выявить, в каком направлении действует фактор «усвоение знаний» в своем влиянии на уровень интереса данного студента: мо­жет оказаться, что в результате разнонаправленного действия этого фактора немало пар студентов уже через месяц поменяются местами в ранговом ряду по уровню интереса (Ха< Хb). В этом случае в урав­нение (3.5.1) целесообразно ввести не статический показатель Xi a простейший динамический показатель Хi, = . Кроме того, не исключена возможность одновременного использования в уравнении (3.5.1) и статических Xi. и динамических Хi. показателей; тогда разра­ботанная модель прогноза будет учитывать как достигнутый уровень (экстраполировать статику), так и намечающиеся тенденции (экстра­полировать тенденции).

— 105 —
Страница: 1 ... 100101102103104105106107108109110 ... 324