Больше того, оказалось, что определить предмет математики, указать, чем именно она занимается, невероятно трудно. Старое традиционное определение математики, как науки о количестве, было признано неудовлетворительным. Б. Пирс определил математику как «науку, которая выводит необходимые заключения». Гамильтон и Де-Морган — как «науку о чистом пространстве и времени». Дело кончилось тем, что Рассел дал свою парадоксальную характеристику математике, сказав, что это «доктрина, в которой мы никогда не знаем, ни о чем мы говорим, ни верно ли то, что мы говорим». Таким образом, во второй половине XIX века, и особенно к концу его, была осознана необходимость уточнить фундаментальные понятия математики и прояснить ее логические основания. В то же время были сделаны успешные попытки применить методы математики к логике. Усилиями Буля, Пирса, Де Моргана, Шредера, Порецкого была разработана «алгебра логики», эта первая форма математической, или символической логики. В свою очередь методы символической логики были применены к анализу основ математики. В результате были сделаны попытки строгой формализации арифметики (Фреге, Пеано, затем Уайтхед и Рассел) и геометрии (Гильберт, Веблен). Формализация означает такое построение арифметики (или другой науки), при котором принимаются некоторые основные понятия определения, положения (аксиомы) и правила выведения из них других положений. Строгость определения понятий исключает возможность неточностей, а соблюдение правил должно (по идее) обеспечить возможность непротиворечивого выведения всех предложений (или формул) данной системы. Поскольку задача состояла в формализации и аксиоматизации уже давно сложившихся наук, естественно, что при этом можно было рассматривать их как готовое наличное знание и искать в них одну лишь логическую форму, совершенно отвлекаясь от вопроса о происхождении их понятий и принципов, от отношения их к эмпирической реальности, от их интуитивного содержания. Поэтому в «Основах геометрии» Гильберта мы находим очень мало чертежей и фигур. «Основная мысль моей теории доказательства, — писал Гильберт, — такова: все высказывания, которые составляют вместе математику, превращаются в формулы, так что сама математика превращается в совокупность формул. Эти формулы отличаются от обычных формул математики только тем, что в них, кроме обычных знаков, встречаются также и логические знаки» (7,366). Некоторые из этих формул были приняты в качестве аксиом, из которых по соответствующим правилам выводились теоремы. Аналогичным образом была проведена и формализация арифметики. Поскольку и здесь речь шла о том, чтобы создать наиболее строгую и стройную дедуктивную систему, эта цель, казалось, могла быть достигнута при максимальном исключении всякого внелогического интуитивного содержания из понятий и предложений арифметики и выявлении, таким образом их внутренней логической структуры. Грандиозная попытка полного сведения чистой математики к логике была предпринята в Principia Mathematica Уайтхеда и Рассела и, в известном смысле, была естественным логическим завершением всего этого движения. Таким образом, математика была, по существу, сведена к логике. Еще Фреге положил начало так называемому логицизму, заявив, что математика это ветвь логики. Эта же точка зрения была принята и Расселом. — 228 —
|