В результате этого рассуждения Галилей делает неожиданный вывод: "...продолжая деление и, умножая число частей в предположении приблизиться к бесконечности, мы на самом деле удаляемся от нее... Мы видели... что чем к большим числам мы переходим, тем реже попадаются в них квадраты и еще реже - кубы; отсюда ясно, что, переходя к большим числам, мы все более удаляемся от бесконечного числа; отсюда можно вывести заключение... что если какое-либо число должно являться бесконечностью, то этим числом должна быть единица; в самом деле, в ней мы находим условия и необходимые признаки, которым должно удовлетворять бесконечно большое число, поскольку она содержит в себе столько же квадратов, сколько кубов и сколько чисел вообще". Это доказательство Галилея, где наиболее наглядно видна глубокая связь его со способом мышления Николая Кузанского, а именно с его диалектикой "совпадения противоположностей", опять-таки представляет собой парадокс. Единица в понимании античных математиков и философов не являлась числом, а рассматривалась как "начало числа", или "принцип числа"; она есть математический "представитель" того самого единого, которое, в конечном счете, непостижимо. Единица, или единое, порождает все числа при соединении с противоположным ему началом - беспредельным. Ни сама единица, ни беспредельное не суть числа, как поясняли пифагорейцы: первым числом у них является тройка (ибо двойка - это тоже еще не число, а символ беспредельного). У Галилея, как и у Николая Кузанского, единое и беспредельное оказываются тождественными, и единица, таким образом, есть бесконечное. При этом Галилей, подобно Кузанцу, мыслит бесконечность как актуальную. Сам пример, приведенный Галилеем, представляющий собой утверждение о том, что множество квадратов равномощно множеству всех натуральных чисел, предвосхищает положения теории множеств Георга Кантора. Галилей прекрасно понимает, что понятие актуальной бесконечности не может быть получено на том пути, на котором мы приходим к понятию бесконечности потенциальной; то действие, которое мы осуществляем, деля, допустим, отрезок пополам, затем на четыре части, на восемь частей и т.д. до бесконечности, никогда не приведет нас к получению актуально бесконечного множества, ибо "такой процесс постепенного деления конечных величин необходимо было бы продолжать вечно; достигнуть же таким путем приближения к неделимым в конечный период времени совершенно невозможно". Конечная величина, подчеркивает Галилей, не может никогда превратиться в актуально бесконечную путем постепенного ее увеличения: как замечает Галилей, идя этим путем, мы удаляемся от актуальной бесконечности. Между конечным и актуально бесконечным - непереходимый рубеж; как выражается Галилей, можно обнаружить своеобразное "противодействие природы, которое встречает конечная величина при переходе в бесконечность". Галилей приводит и пример такого "противодействия природы": если мы будем увеличивать радиус круга, то длина окружности будет также увеличиваться, однако это будет происходить только до тех пор, пока радиус будет оставаться как угодно большой, но конечной величиной. При переходе к актуально бесконечному радиусу (когда круг становится "большим из всех возможных") круг исчезает и на его месте появляется бесконечная прямая. Ясно, продолжает Галилей, что "не может быть бесконечного круга; отсюда как следствие вытекает, что не может быть ни бесконечного шара, ни другого бесконечного тела, ни бесконечной поверхности". Галилеев пример, как видим, заимствован у Николая Кузанского и должен пояснить то же, что пояснял и Кузанец: принципиальное различие между потенциальной бесконечностью, которая всегда связана с конечным (хотя и как угодно большим) числом, телом, временем, пространством и т.д., и бесконечностью актуальной, которая предполагает переход в иной род, изменение сущности, а не количества. — 61 —
|