Роль меры, какую у греков играло неделимое (единица), у Кузанца выполняет бесконечное - теперь на него возложена функциz быть мерой. Николай Кузанский понимает, что с этим переосмыслением понятия меры в его мышление входит парадокс, но как раз парадокс в виде принципа совпадения противоположностей уже объявлен Кузанцем верховным началом философии. Кузанец называет абсолютный максимум "всеобщим пределом", хорошо понимая при этом, что он употребляет слово "предел" в переносном смысле, даже более того - как оксюморон. "Ведь не будь абсолютная максимальность бесконечной, не будь она всеобщим пределом, ничем в мире не определяемым, она не была бы и актуальностью всего возможного..." Каким же образом бесконечное может быть мерой, в каком смысле теперь употребляется это ключевое понятие не только философии, но и науки? Кузанец пишет: "Как бесконечная линия есть точнейшая мера всех линий, так максимальная сущность есть точнейшая мера всех сущностей". Но если бесконечность становится точнейшей мерой, то парадокс с неизбежностью становится синонимом точного знания. И в самом деле, вот что вытекает из принятых Кузанцем предпосылок: "...если бы одна бесконечная линия состояла из бесконечного числа отрезков в пядь, а другая - из бесконечного числа отрезков в две пяди, они все-таки с необходимостью были бы равны, поскольку бесконечность не может быть больше бесконечности. Соответственно как одна пядь в бесконечной линии не меньше, чем две пяди, так бесконечная линия не становится по прибавлении двух пядей больше, чем по прибавлении одной. Мало того: поскольку любая часть бесконечности - тоже бесконечность, одна пядь бесконечной линии так же превращается во всю бесконечную линию, как две пяди. Точно так же, раз всякая сущность в максимальной сущности есть сама эта максимальная сущность, максимум есть не что иное, как точнейшая мера всех сущностей. Причем не найти другой точной меры всякой сущности, кроме этой..." Точность новой меры, как видим, не имеет ничего общего с прежним понятием точности; если для античной математики существенно было найти критерий, позволяющий сравнивать и различать конечные величины, устанавливая соотношение между ними, то для математики, как ее понимает Николай Кузанский, важно показать, что перед лицом бесконечности всякие конечные различия исчезают, и двойка становится равна единице, тройке и любому другому числу. И в самом деле, говоря об интеллектуальном (т.е. наиболее точном) знании, которое он отличает от рассудочного, лишь приблизительного знания, Кузанец замечает: "Если обратишься к единству рассудка, интеллекту, где число пять не больше числа три или числа два и нет различения четных, нечетных, больших и малых чисел, потому что всякое рассудочное число разрешается там в простейшее единство, то окажется, что равенство двух и трех пяти истинно только в сфере рассудка". — 19 —
|