Аналогичные топологические структуры появляются в квантовой гравитации, но, ввиду того, что в игру вступают не столько двухмерные, сколько многомерные многообразия, равную роль начинают играть и высшие гомологические группы. Эти многомерные многообразия не могут быть визуализированы в условном картезианском пространстве трех измерений: к примеру, проективное пространство RP, образующееся при отождествлении антиподов обычной сферы, потребовало бы от евклидова пространства увеличения измерений примерно до 566. Тем не менее, высшие гомологические группы могут восприниматься, по крайней мере приблизительно, благодаря подходящей многомерной (нелинейной) логике67,68. Теория многообразий: всё и границы, границы и дырыВ своей знаменитой статье «Наделен ли полом субъект науки?» Люси Иригарей указывает на то, что В теории множеств математические науки интересуются открытыми и закрытыми пространствами […]. Они почти совсем не уделяют внимания вопросу приоткрытого, нечетких множеств, всего того, что рассматривает проблему краев69 […] В 1982 году, когда эссе Иригарей появилось в первый раз, оно оказалось весьма сильной критикой: дифференциальная топология традиционно отдавала дань предпочтения исследованию того, что в технических терминах называется «многообразиями без границы». Но в последнее десятилетие некоторые математики под влиянием феминистской критики уделили особое внимание теории «многообразий с границей70». И, быть может, нет никакого совпадения в том, что именно эти многообразия появляются в новой физике теории конформных полей, теории сверхструн и квантовой гравитации. В теории струн квантовая амплитуда, необходимая для взаимодействия между и закрытыми или открытыми струнами представлена функциональным интегралом (в основе являющимся суммой) по полям, которые располагаются на двухмерном многообразии с границей71. В квантовой гравитации мы можем ожидать, что картина будет схожей, за исключением того, что двухмерное многообразие с границей будет замещено многомерным. К несчастью многомерность направлена против течения устоявшейся линейной математической мысли, и, несмотря на недавние открытия (связанные главным образом с изучением многомерных нелинейных феноменов в теории хаоса), теория многомерных многообразий с границей остается не очень развитой. Тем не менее, работа физиков по приближению функционального интеграла к квантовой гравитации идет своим чередом72, а эта работа несомненно вызовет интерес у математиков73. Иригарей предвосхитила важный вопрос всех этих теорий: можно ли нарушить (пересечь) границы, и что происходит в случае их пересечения? Эта проблема известная под техническим наименованием «условий границы». На чисто математическом уровне наиболее поразительной характеристикой этих условий границы оказывается разнообразие возможностей: к примеру, «условия со свободными границами» (когда нет препятствий, которые нужно было бы преодолевать), «условия с отражающими границами» (зеркальное отражение), «условия с периодическими границами» (возвращение к другому месту многообразия) и «условия с антипериодическими границами» (возвращение с разворотом на 180°). Вот вопрос, который ставят физики: какие из всех этих возможных условий границы реально появятся в репрезентации квантовой гравитации? Или, быть может, они появятся все одновременно, в качестве равноправных элементов, как на то указывает принцип дополнительности74? — 130 —
|