Квантовая гравитация: струна, сплетение или морфогенетическое поле?Тем не менее, эта интерпретация, будучи вполне адекватной для классической общей теории относительности, становится неполной в появляющемся сейчас постмодернистском рассмотрении квантовой гравитации. Когда даже гравитационное поле — воплощенная геометрия — становится некоммутативным (и, следовательно, нелинейным) оператором, как можно сохранить классическую интерпретацию Gmv как геометрической реальности? Не только наблюдатель, но и само понятие геометрии становится реляционным и контекстуальным. Итак, синтез квантовой теории и теории относительности оказывается главной нерешенной проблемой теоретической физики41; никто сегодня не может с уверенностью предсказать, какими же будут язык, онтология и уж тем более содержание этого синтеза, если он произойдет, и никто не может предсказать, когда он произойдет. Тем не менее, полезно будет исторически рассмотреть метафоры и образы, которые были задействованы физиками в их попытках понять квантовую гравитацию. Первые попытки, восходящие к началу 60-х годов, визуализировать геометрию на планковском уровне (примерно 10-33 см.) описывали ее как «пространственно-временную пену»: пузырьки кривых пространства-времени, обладающие сложной топологией постоянно меняющихся взаимосвязей42. Но физики оказались неспособны продвинуть этот подход дальше, причиной чему в те времена был, возможно, несоответствующий уровень развития топологии и теории многообразий (см. далее). В 70-х годах физики опробовали еще более условный подход: упростить уравнения Эйнштейна так, чтобы они стали почти линейными, а затем к этим сверхупрощенным уравнениям применить стандартные методы квантовой теории полей. Но этот метод тоже провалился: оказалось, что теория Эйнштейна, выражаясь техническими терминами, «пертурбативно неренормализуема»43. Это означает, что сильные нелинейные эффекты общей теории относительности Эйнштейна внутренне присущи теории; всякий подход, предполагающий, что эти эффекты слабы, оказывается просто самопротиворечивым. (Что неудивительно: квазилинейный подход разрушает наиболее важные признаки общей теории относительности, такие, например, как черные дыры.) В 80-х годах в моду входит другой, сильно отличающийся, подход, известный под именем теории струн: в ней фундаментальными составляющими материи являются не точечные частицы, а, скорее, открытые или закрытые мельчайшие (относящиеся к планковскому уровню) струны44. В этой теории пространственно-временное многообразие уже не существует в качестве объективной физической реальности; напротив, пространство-время оказывается производным понятием, приближением, которое сохраняет силу лишь в больших масштабах (причем «больших» означает «много больших, чем 10-33 см.»!). В течение некоторого времени многие воодушевленные сторонники теории струн думали, что они приближаются к некоей Теории Всего — скромность не относится к числу их добродетелей — и некоторые так думают и сегодня. Но математические трудности теории струн оказываются просто ужасными, и нет никакой очевидности, что они будут решены в ближайшем будущем. — 127 —
|