Пути в незнаемое. Сборник двадцатый

Страница: 1 ... 378379380381382383384385386387388 ... 454

Пытаясь осмыслить в духе своих числовых выкладок законы небесной механики, Хлебников писал: «Это уравнение очень красиво, если его написать цепями нисходящих степеней троек. Закономерно уходящие показатели своими головками кивают на ковыль, как верхушки трав и волнуются ржаными полями чисел, какой-то рожью троек. Напишем цепями троек наш закон, чтобы получить зрительную радость при виде этих бесконечных цепей, стройных колосьев чисел». Хотя отчасти такие метафорические описания уравнений и представляют собой дань стилистике научной прозы позднего Хлебникова, нельзя сомневаться, что эстетическое зрительное переживание чисел и уравнений было у него непосредственным.

Мы уже говорили, что увлечение языком чисел можно было бы в какой-то мере считать предвосхищением того времени, когда информация в вычислительных машинах стала использоваться именно в числовой форме. Но по поводу компьютеров, по мере их распространения в Америке, все чаще высказывают опасения, что, пользуясь только полученными с их помощью сведениями, люди окажутся лишенными конкретных представлений о вещах и событиях.

Не о том ли думал и Хлебников, когда писал в четверостишии, из ранней его поэмы перенесенном в «Зангези»:

Если кто сетку из чисел

Набросил на мир,

Разве он ум наш возвысил?

Нет, стал наш ум еще более сир!

Но сетка чисел может оказаться и спасительной, когда они предохраняют от гибели. Он изучал под этим прикрытием

Столетия за сеткой чисел,

Как будто от ужала пчел.

В этом смысле хлебниковское восприятие чисел противоположно тому, которое могло бы оказаться характерным для кибернетического века. Для него числа — это как бы особая область природы. Их можно наблюдать, они доступны взору, они внушают восторг, радость, страх. Поэтому наблюдение чисел — для него наука опытная, не просто занятие «числяра».

В свете современных представлений о функциях полушарий мозга то восприятие чисел, которое было у Рамануджана, Хлебникова, Шерешевского, можно было бы считать преимущественно правополушарным. В отличие от логического алгоритмического представления о числе как элементе строящейся последовательности, которое присуще левому полушарию, правое полушарие оперирует с числами как с образами. Это самая древняя стратегия обращения человека с числами, намного предшествовавшая позднейшей математике. Из нее выросло древнекитайское и древнеиндийское обращение с образами чисел как с отмычками для постижения всего мироздания (сейчас это называют «нумерологией»). В этой стратегии угадываются первые шаги понимания чисел, без которых и последующее построение логической теории, доказывающей теоремы, было бы невозможно. Как это случалось и в других областях работы мысли, поэзии, и ее носителю — Хлебникову — более созвучны были именно ранние этапы становления знания, еще основанные на образном мышлении.

— 383 —
Страница: 1 ... 378379380381382383384385386387388 ... 454