Пути в незнаемое. Сборник двадцатый

Страница: 1 ... 204205206207208209210211212213214 ... 454

Действительно, рождение частиц большей массы из частиц с меньшей или даже из физического вакуума, то есть из «ничего», абсолютно не наглядны с позиций обыденного разума: как это слон может находиться в мышке? Нечто подобное переживает сегодня и биология. Вторжение математики в нее приняло такой характер, что принципы организации мозга, описываемые формулами, сильно потеряли в наглядности. Скажем, зрение: как прекрасно выглядело его объяснение, когда глаза несли в мозг «картинки», некие слепки видимой действительности, «узоры возбуждения» — отпечатки темных и светлых мест изображения. Однако современная нейрофизиология зрительного процесса показывает нам, что этот узор подвергается после сетчатки такому множеству сложнейших преобразований, что о «картинках» трудно говорить. Речь идет о процессе многократного отражения, отображения из одного множества (множества в математическом смысле) в другое. Но это отображение, подчеркивает Бернштейн, уже не примитивное, когда каждому элементу множества исходных точек ставится в соответствие другая точка в другом множестве (так думали когда-то и предполагали, что светлым и темным местам картинки соответствуют возбужденные и заторможенные клетки мозга). Дело куда более сложно. Каждой г р у п п е точек исходного множества ставится в соответствие элемент иного множества, а потом совокупностям этих элементов — какой-то о д и н элемент более высокого множества, и так далее, и так далее…

Иными словами, заключает Бернштейн, мозг налагает на картину мира присущие ему, мозгу, операторы и тем самым у п о р я д о ч и в а е т многообразие мира, ищет в нем подобия и сходные классы. Мозг таким способом совершает исключительно важную по своим последствиям работу: вносит в информацию о мире д о б а в о ч н у ю информацию — свою собственную. От этого получившаяся, резко усеченная (из-за процесса многократных отображений) по отношению к исходной, информация оказывается более богатой: приобретает смысловое содержание. И поскольку принципы, по которым происходят расчленения и соотнесения информации, — не что иное, как математические операторы моделирования, способов моделирования может быть чрезвычайно много, столько, сколько операторов.

Советские математики И. М. Гельфанд (тот самый, у которого Николай Александрович выступал на семинарах и который известен своими исследованиями также и по нейрофизиологии мозжечка) и М. Л. Цетлин изобрели «хорошо организованные функции», непредставимые с помощью графиков и картинок. Эти функции интересны тем, что они многомерны и зависят от многочисленных факторов-аргументов — «существенных» и «несущественных». Названия отражают диалектическую противоречивость факторов: несущественные приводят к резким, но недолгим «всплескам» и не влияют на отдаленные результаты, существенные же не проявляют своего влияния сиюминутно, однако от них зависит конечный итог.

— 209 —
Страница: 1 ... 204205206207208209210211212213214 ... 454