121 В этих условиях вопросы объективного устройства мира, законов природы в значительной мере передаются от философии к конкретным наукам. Постепенно складывается первая естественно-научная картина мира. 3.6.2. Александрийская математическая школа. В древнегреческой культуре развитие получила прежде всего математика. Уже в V— IV вв. до н.э. в древнегреческой математике были разработаны геометрическая алгебра, теория делимости целых чисел и теория пропорций (Архит), метод «исчерпывания» Евдокса (как прообраз теории пределов), теория отношений Евдокса и др. Эпоха эллинизма поставила перед математикой ряд новых задач, связанных с запросами мореплавания (равновесие и устойчивость плавающих тел), совершенствованием геодезии и картографии, разработкой точных астрономических измерений и вычислений, уточнением календаря, требованиями военной и строительной техники, в частности гидротехнических сооружений, и др. Можно сказать, что математики эллинистической эпохи достойно справились с этими задачами. Качественно новый этап в развитии математики связан с деятельностью александрийской математической школы. У ее истоков стоял великий математик древности, педагог и систематизатор математической науки Евклид. О личности Евклида нам известно очень мало. Жил он в последней четверти IV — первой четверти III в. до н.э. Учился в Афинах, затем переехал в Александрию. В своем основном труде «Начала», состоявшем из ] 3 книг, Евклид изложил все достижения древнегреческой математики в систематизированной аксиоматической форме. (Изучение геометрии в средней школе вплоть до самого последнего времени строилось на основе «Начал».) В первых четырех книгах «Начал» излагалась геометрия на плоскости; в пятой и шестой — теория отношений Евдокса; в седьмой, восьмой и девятой — теория целых и рациональных чисел, в основе своей разработанная еще пифагорейцами; в десятой книге — свойства квадратичных иррациональностей; в одиннадцатой — основы стереометрии; в двенадцатой — метод исчерпывания Евдокса, в частности доказываются теоремы, относящиеся к пло- 122 щади круга и объему шара и др.; в заключительной, тринадцатой книге рассматривались свойства пяти правильных многогранников, в которых Платон видел идеальные геометрические образы, выражающие основные структурные отношения Космоса. Изложение математических знаний носило дедуктивный характер, теории выводились из небольшого числа аксиом. Универсальной ученостью отличался Эратосфен, у которого есть работы не только по математике, но и по астрономии, географии, истории, философии и филологии. Особенно известны его работы по определению размеров земного шара, по географии. В математике Эратосфен известен своими исследованиями целочисленных пропорций, открытием «решетки Эратосфена» (способ вьщеления простых чисел из любого конечного числа нечетных чисел, начиная с трех). — 94 —
|