105 Для решения проблемы несоизмеримости надо было четко представлять: является ли неограниченной продолжительность процесса нахождения общей меры; как выразить бесконечную малость последней; как выразить то, что она должна содержаться бесконечное число раз в сравниваемых величинах. Теоретически были возможны два выхода. Первый связан с обобщением понятия числа и включением в него более широкого класса математических величин (как рациональных, так и иррациональных). По этому пути математика пойдет много позже, в эпоху Возрождения. Второй путь – геометризация математики, т.е. решение чисто алгебраических задач с использованием геометрических образов (геометрическая алгебра позволяет выражать как рациональные, так и иррациональные отрезки). Поскольку совокупность геометрических величин (например, отрезков) более полна, чем множество рациональных чисел, постольку такое исчисление можно построить в геометрической форме. Так возникла геометрическая алгебра. Например, уравнение X2 = 2 не может быть решено ни в области целых чисел, ни даже в области их отношений. Но оно вполне разрешимо в области прямолинейных отрезков: его решением является диагональ квадрата со стороной, равной единице. Следовательно, для того чтобы получить решение такого квадратного уравнения, из области чисел надлежит перейти в область геометрических величин. Геометрическая алгебра приложима не только к соизмеримым, но и к несоизмеримым отрезкам и тем не менее является точной наукой. Первичные элементы геометрической алгебры – отрезки прямой. По отношению к ним определялись арифметические вычислительные операции. Сложение интерпретировалось как приставление отрезков, вычитание – как отбрасывание от отрезка части, равной вычитаемому отрезку. Умножение отрезков приводило к построению площадей (произведением отрезков Аи В считался прямоугольник со сторонами Аи В). Произведение трех отрезков давало параллелепипед. Произведение большого числа сомножителей в геометрической алгебре не могло рассматриваться. Деление было возможно лишь при условии, что размерность делимого больше размерности делителя и выступало как задача приложения площадей. 106 Методы геометрической алгебры имели принципиальные ограниченности: они позволяли определить только один, положительный корень квадратного уравнения; средствами построения были циркуль и линейка; объектами построения были геометрические образы размерности не выше второй; решение уравнений степени выше третьей в геометрической алгебре древних просто невозможно. — 82 —
|