Ответ (10) Загадки как урок естествознанияВ большинстве логических задач находят отражение наши познания в математике и физике. Такие задачи позволяют не только детям, но и взрослым людям понять, какое значение имеет математика в повседневной жизни, даже если все выученные в школе формулы давно забыты. В качестве примера приведем классическую историю. На берегу реки стоит крестьянин с волком, козой и капустой. Он хочет перевезти их на другой берег, но его лодка настолько мала, что он может взять с собой только что-то одно: либо волка, либо козу, либо капусту. И вот тут возникает проблема: если оставить вдвоем волка и козу, волк съест козу. Если оставить козу и капусту, коза съест капусту. Как же переправить всех троих? Такие взаимоисключающие комбинации постоянно встречаются в прикладной математике. Это хорошо известно кибернетикам и программистам. Рис. 8. Капуста, коза, волк и крестьянин создают при разбивке по парам опасные сочетания Ответ (11) Еще одна классическая задача математика Жозефа Бертрана, составленная в 1888 году, посвящена теории вероятности. У нас есть три комода, и в каждом из них по два ящика. В первом комоде в обоих ящиках лежит по золотой монете, во втором комоде в каждом ящике лежит по серебряной монете, а в третьем комоде в одном ящике лежит золотая, а во втором – серебряная монета. Нам надо наугад открыть любой ящик в одном из комодов. Какова вероятность того, что там лежит золотая или серебряная монета? Совершенно очевидно, что она составляет один к трем. Итак, мы открываем ящик и находим там золотую монету. Какова теперь вероятность, что во втором ящике того же комода лежит серебряная монета? Вероятно, ваш ответ будет 50:50, но мы предлагаем вам спокойно подумать еще раз. Ответ (12) В 1920-е годы в Америке была очень популярна одна задача. Она настолько завоевала умы, что вместо приветствия люди зачастую спрашивали друг друга: «Так сколько же лет Анне?» Условие задачи звучит так: «Мэри 24 года. Сейчас ей вдвое больше лет, чем было Анне, когда Мэри было столько же лет, сколько Анне сейчас. Сколько сейчас лет Анне?» Ответ (13) Но и в наши дни хитроумные математические задачи (с которыми порой не справляются даже профессионалы) занимают умы людей. Это доказала задача с тремя дверями, предложенная на телешоу «Давайте заключим сделку». Десятки американских профессоров математики дружно высмеяли писательницу Мэрилин вос Савант, которая заявила, что участвующий в шоу кандидат может существенно повысить свои шансы на выигрыш, если поменяет свое же первоначальное решение. Представьте себе, что вы участвуете в этом шоу и стоите перед тремя дверями. За двумя из них ничего нет, а за третьей находится главный приз. Ведущий просит вас выбрать одну дверь, но пока не открывать ее. Совершенно очевидно, что вероятность успеха составляет один к трем. После этого ведущий (который, естественно, знает, где находится приз) открывает одну из двух оставшихся дверей и показывает, что там ничего нет. А теперь он предоставляет вам право выбора. Вы можете остаться при своем прежнем решении или открыть другую оставшуюся дверь. На первый взгляд кажется, что никакой разницы нет. Здравый смысл подсказывает, что вероятность в любом случае будет 50:50. Какой же смысл менять свое решение? Именно такой вывод был сделан большинством математиков. — 61 —
|