Метод действия с числами (цифрами), состоящий в том, что выполняется порядковый счет с опорой на написанные числа, составление заданного числа из цифр, написанных на карточках, и т.д. Метод решения задач, состоящий в том, что даются простейшие задачи типа «Хозяйка купила 3 кг фруктов и 2 кг овощей. Сколько всего кг купила хозяйка?» Постепенно задачи нужно усложнять. В перечисленных и некоторых других методах цифра и число выступают предметом действия с ними. Психологическая сущность этих методов заключается в том, что предметом (объектом) внимания здесь является не цифра или число, а действие пересчета, подсчета, складывания (или вычитания) предметов и т.д. Эти методы полезно применять не только в начале обучения, а на каждом занятии в течение всего периода обучения. Главная характеристика этих методов — действие, Деятельность с числами — должна сохраняться, а задания — меняться, Усложняться в процессе продвижения в обучении. Остановимся на анализе конкретных методов. Метод двигательного (моторного) образа цифры. Процедура (программа операций): произносится вслух название цифры; требуется: быстро «написать» ее в воздухе рукой (двигательная память, моторный образ цифры) с закрытыми глазами; б) найти эту цифру среди лежащих на столе трех цифр — с закрытыми глазами, наощупь; в) ощупать ее; г) назвать; д) списать; е) написать по памяти. Длительная работа по последовательному выполнению всех операций этой программы позволяет восстанавливать действие узнавания и называния цифры. Постепенно количество операций уменьшается, действие опознания цифры становится более сокращенным и менее произвольным за счет интериоризации некоторых операций. Этот метод и ряд других, подобных ему, опираются на совместную работу и взаимодействие кинестетического, слухового, зрительного анализаторов и используют произвольный уровень речи (вербальная форма записи операций, называние цифры, восприятие ее наименования на слух). Афферентации с этой системы анализаторов в процессе выполнения операций идут в ответ на эти стимулы и создают новую функциональную систему восприятия и узнавания цифры. Таким образом, этот метод использует ряд опор на сохранные анализаторы с целью создания новой функциональной системы, а также на перевод действия на наиболее упроченные и непроизвольные уровни (двигательный образ и др.) и произвольную речь. Метод реконструкции цифры включает приемы собственно реконструкции заданной цифры и получения из нее ряда других цифр. Например, дается цифра 3 и ряд элементов (полукруги, круги, палочки, и др.); задача — дополнить заданную цифру сначала до любой цифры, а позже — до определенной, заданной. Эта система приемов завершается вербальным сравнительным анализом строения полученной и исходной цифры (общее описание конфигурации сравниваемых цифр, включающее выделение сходства и различий, выделение существенного элемента в каждой цифре). Отработанные способы опознания цифры закрепляются в таких упражнениях, как цифровой диктант близких и далеких по оптическому образу знаков, подчеркивание общего и отличного в заданных цифрах, узнавание цифры методом ощупывания, называние и запись заданного числа (цифры), включение отрабатываемых чисел в предметные счетные операции и другие действия с ними. — 31 —
|