На основании анализа истории развития систем счисления и генезиса числа можно утверждать, что формирование понятия числа связано с овладением системой счисления. Последняя представляет собой модель числа (а не просто обозначение), необходимую для объективизации числа, которое само по себе является абстрактным предметом. Состояние понятия числа у того или иного субъекта связано с овладением и усвоением современной системы счисления. Этот вывод базируется на изучении истории развития числа и счетных операций и результатов исследования больных с «акалькулией». Благодаря объективизации понятия числа современному человеку для овладения этим понятием не нужно проходить весь исторический путь его развития. Поэтому мы считаем, что деятельность по овладению разрядно-позиционной системой счисления есть деятельность, продуктом которой является понятие числа. Решающее значение для такого вывода имеет тот факт, что в процессе обучения дети могут овладеть системой счисления и понятием числа только с помощью взрослого человека. Деятельность по овладению системой счисления и понятием числа развивается так же, как и все другие высшие психические функции, постепенно в процессе интериоризации приобретая «умственную» и сокращенную форму, «свернутый» характер которой не позволяет видеть ее сложную структуру. Ж. Пиаже по этому поводу писал: «Основополагающие свойства числовой системы, природа и поведение чисел настолько глубоко укореняются, что среднему взрослому человеку они кажутся очевидными».(СНОСКА: Пиаже Ж. Представления ребенка о числе. М: Просвещение, 1965.) В истории учения о методах обучения арифметике также отмечаются разные взгляды на понятие числа и соответственно на методы обучения счислительным операциям. Одно из таких воззрений, на базе которого был реализован так называемый метод изучения чисел, связано с пониманием числа как чего-то созерцаемого, чего-то, что может быть представлено. В данном методе для овладения понятием числа предлагалось заучивать числовой ряд (такого взгляда придерживался, например, немецкий методист А.В. Грубе). Сторонники другого, противоположного направления (в частности, А.И. Гольденберг) утверждали, что преподавание арифметики должно переходить не от «числа к числу», а от действия к действию. По их мнению, понятие числа, как и каждое понятие, не подлежит ни созерцанию, ни представлению. Очень важный аргумент против метода изучения чисел, приведенный Д.Д. Галаниным, состоит в том, что факт, удержанный памятью как простое запоминание состава числа, является неподвижным, не способен ни к деформации, ни к развитию. Овладение сложной структурой числа, его понятием является необходимой предпосылкой для перехода от понятия числа к действию с ним. Операции счета так же, как и понятие числа, сложны по своему психологическому строению, включены в десятичную систему счисления и зависят от нее. Сложность счетных операций обусловливается множеством различных факторов и прежде всего наличием десятичной системы и отвлеченных чисел, с которыми человеку приходится оперировать, характером самой вычислительной операции и величинами, принимающими участие в ней, способами, которыми совершается операция, участием речи в ней и т.д. Так, процессы сложения и вычитания имеют разную психологическую структуру в зависимости от того, протекают ли эти операции в пределах десятка или с переходом через него. Операции в пределах десятка совершаются с использованием готовых числовых групп, операция же с переходом через десяток представляет собой сложную цепь взаимосвязанных промежуточных операций (например, 33 + 28). — 20 —
|