1. Наследование той или иной черты предполагает передачу неких «факторов» (сегодня мы зовем их генами ) от родителей потомству. 2. Каждый потомок наследует от каждого родителя по одному такому «фактору» (для каждой отдельной черты). 3. Отдельная черта может не проявиться у потомка, однако передаться следующему поколению. Но как же объяснить количественные результаты опытов Менделя? Мендель утверждал, что у каждого растения-родителя должно быть два идентичных «фактора» (сегодня мы назвали бы их аллелями – вариантами гена), либо два желтых, либо два зеленых (как на рис. 35). При скрещивании каждый потомок наследует две разные аллели, по одной от каждого родителя (согласно вышеприведенному правилу 2). То есть каждое зерно потомка содержит желтую аллель и зеленую аллель. Почему же тогда в этом поколении все зерна желтые? Мендель объяснил, что желтый – доминирующий цвет и он маскирует присутствие в этом поколении зеленой аллели (правило 3). Однако (опять же в соответствии с правилом 3) доминантный желтый не мешает рецессивному зеленому передаваться следующему поколению. В следующем туре скрещивания каждое растение, содержащее одну желтую и одну зеленую аллель, опыляется другим растением, содержащим ту же комбинацию аллелей. Поскольку потомство содержит по одной аллели от каждого родителя, зерна следующего поколения могут содержать следующие комбинации (рис. 35): зеленая – зеленая, зеленая – желтая, желтая – зеленая или желтая – желтая. Все зерна с желтой аллелью становятся желтыми, потому что желтый цвет – доминантный. Рис. 34 Рис. 35 Следовательно, поскольку у всех комбинаций равные шансы на возникновение, отношение желтых зерен к зеленым должно составлять 3:1. Вы, возможно, заметили, что весь эксперимент Менделя, в сущности, ничем не отличается от эксперимента по бросанию двух монет. Назовем зеленые аллели орлами, а желтые – решками и зададимся вопросом, какая доля зерен будет желтой (с учетом того, что доминантная желтая аллель определяет цвет зерен), – и это будет то же самое, что спрашивать о вероятности получить по крайней мере одну решку при бросании двух монет. Очевидно, вероятность равна ?, поскольку решка есть в трех из возможных четырех результатов (решка – решка, решка – орел, орел – решка, орел – орел). Это значит, что соотношение количества бросков, где получается по крайней мере одна решка, к количеству бросков, где нет ни одной решки, в конечном итоге приблизится к 3:1, как в экспериментах Менделя. — 93 —
|