Был ли Бог математиком?

Страница: 1 ... 8384858687888990919293 ... 194

Кетле сделал и более смелые выводы. Он решил, что если черты и качества человека описываются кривой ошибок, значит, «средний человек» – это тип, который природа стремится породить[87]. По мысли Кетле, подобно тому, как при производстве гвоздей погрешности изготовления приводят к некоему распределению колебаний длины гвоздя возле средней (правильной) длины, ошибки природы распределены вокруг некоего предпочтительного биологического типа. Кетле объявил, что представители одного народа стремятся к какому-то среднему показателю, «словно результаты измерений одного и того же человека при помощи инструментов, грубость которых объясняла бы разброс отклонений».

Очевидно, это было все же слишком смелое обобщение. Конечно, Кетле открыл, что биологические характеристики, и физические, и психологические, распределяются по нормальной кривой частот, и это было необычайно важное открытие, однако нельзя ни считать его доказательством намерений матери-природы, ни рассматривать отдельные вариации просто как ошибки. Скажем, Кетле обнаружил, что средний рост французских призывников составляет пять футов четыре дюйма. Однако на левом конце кривой он обнаружил человека ростом в один фут пять дюймов. Очевидно, нельзя списывать это на ошибку в четыре фута, допущенную при измерении роста в пять футов четыре дюйма.

Даже если пренебречь идеей «законов», которые определяют создание людей по одному шаблону, уже одно то, что распределение самых разных свойств – от веса до IQ – следует одной и той же нормальной кривой, само по себе примечательно. Но этого мало – даже распределение среднего уровня успешных подач в высшей бейсбольной лиге и то более или менее нормально, равно как и доходность фондовых индексов (которые составляются из множества отдельных фондов). Более того, если распределение отклоняется от нормальной кривой, его, как правило, надо основательно проверить. Например, если распределение оценок по английскому языку в какой-то школе отличается от нормального, это наводит на мысль о проверке принятых там правил выставления оценок. Однако это не означает, что все распределения нормальны. Распределение длин слов, которые Шекспир употреблял в своих пьесах, не нормально. Слов из трех-четырех букв у него гораздо больше, чем слов из одиннадцати-двенадцати букв. Среднегодовой доход на семью в США тоже распределяется не в соответствии с нормальной кривой. Например, в 2006 году самые богатые 6,37 % домохозяйств получали примерно треть всего дохода. Это наталкивает на интересный вопрос: если и физические, и интеллектуальные качества людей (определяющие, надо думать, потенциальные способности получать доход) подчиняются нормальному распределению, почему с доходом все иначе? Ответы на подобные социально-экономические вопросы, к сожалению, выходят за рамки этой книги. С нашей нынешней – несколько ограниченной – точки зрения удивляться следует уже тому, что, похоже, все физически измеримые особенности людей, растений и животных (той или иной разновидности) распределяются по одной-единственной математической функции.

— 88 —
Страница: 1 ... 8384858687888990919293 ... 194