Однако у загадочной эффективности математики есть и «пассивная» сторона, столь неожиданная, что напрочь затмевает «активную». Понятия и отношения, которые математики изучают ради чистой науки, даже и не думая об их практическом применении, спустя десятки, а иногда и сотни лет нежданно-негаданно оказываются решениями задач, которые коренятся в физической реальности! Как такое может быть? Возьмем, к примеру, довольно забавный случай с чудаковатым британским математиком Годфри Гарольдом Харди (1877–1947). Харди так гордился, что в его трудах не содержится ничего, кроме чистой математики, что подчеркивал в своей знаменитой книге «Апология математика», опубликованной в 1940 году: «Я никогда не делал ничего “полезного”. Ни одно мое открытие не способствовало ни прямо, ни косвенно увеличению или уменьшению добра или зла и не оказало ни малейшего влияния на благоустроенность мира (здесь и далее пер. Ю. Данилова )» (Hardy 1940). Так вот, представляете, он ошибся! Один из его трудов получил второе рождение под названием «Закон Харди-Вайнберга» (в честь Харди и немецкого врача Вильгельма Вайнберга (1862–1937)) – это основополагающий принцип, на который опираются генетики при изучении эволюции популяций. Говоря простыми словами, закон Харди-Вайнберга гласит, что если спаривание в большой популяции происходит совершенно случайно (и нет ни миграции, ни мутаций, ни селекции), то генетический состав от поколения к поколению не меняется[3]. Даже отвлеченный на первый взгляд труд Харди по теории чисел – исследование свойств натуральных чисел – нашел неожиданное практическое применение. В 1973 году британский математик Клиффорд Кокс применил теорию чисел, чтобы совершить прорыв в криптографии – науке о разработке шифров, и изобрел уникальный криптографический алгоритм[4]. Алгоритм Кокса отправил на свалку истории другое утверждение Харди. В той же «Апологии математика» Харди заявил: «Никому еще не удалось обнаружить ни одну военную или имеющую отношение к войне, задачу, которой служила бы теория чисел». Очевидно, что он в очередной раз впал в заблуждение. Шифры играют определяющую роль в военном деле, без них невозможно налаживать связь. Так что даже Харди, один из самых ярых критиков прикладной математики, оказался против собственной воли (будь он жив, он бы наверняка визжал и отбивался) вовлечен в число создателей полезных математических теорий. Но все это лишь верхушка айсберга. Кеплер и Ньютон обнаружили, что планеты нашей Солнечной системы описывают орбиты в форме эллипсов – тех самых кривых, которые на 2000 лет раньше изучал древнегреческий математик Менехм (ок. 350 г. до н. э.). Геометрии нового типа, которые описал Георг Фридрих Бернхард Риман (1826–1866) в своей классической лекции, прочитанной в 1854 году, как выяснилось, сослужили важнейшую службу Эйнштейну – именно они позволили описать ткань мироздания. Математический «язык» под названием «теория групп», разработанный юным гением Эваристом Галуа (1811–1832) исключительно ради того, чтобы определять, имеются ли у тех или иных алгебраических уравнений корни среди целых чисел, стал сегодня языком физиков, инженеров, лингвистов и даже антропологов, позволяющим описать все симметрии на свете[5]. Более того, концепция закономерностей математической симметрии в известном смысле перевернула с ног на голову весь научный метод. На протяжении столетий путь к пониманию устройства мироздания начинался со сбора экспериментальных или наблюдательных фактов, после чего ученые методом проб и ошибок пытались сформулировать общие законы природы. Работа должна была начинаться с локальных наблюдений, после чего мозаику приходилось собирать по кусочкам. Когда в ХХ веке стало понятно, что структуру субатомного мира определяют четкие математические закономерности, современные физики стали поступать диаметрально противоположным образом. Они сначала привлекают принципы математической симметрии и настаивают, что законы природы и, разумеется, кирпичики, из которых состоит вещество, должны подчиняться определенным закономерностям, и выводят из этих предпосылок общие законы. Но откуда природа знает, что ей положено следовать абстрактным математическим симметриям? — 6 —
|