Поэтому Атья считает, что «человек создал (курсив мой. – М. Л. ) математику посредством идеализации и абстрагирования элементов физического мира». Той же точки зрения придерживаются и ингвист Джордж Лакофф и психолог Рафаэль Нуньес. В своей книге «Откуда взялась математика» («Where Mathematics Comes From ») они приходят к такому выводу: «Математика – естественная составляющая человеческого бытия. Она возникает из нашего тела, нашего мозга, нашего повседневного опыта взаимодействия с миром» (Lakoff and N??ez 2000). Точка зрения Атья, Лакоффа и Нуньеса затрагивает еще один интересный вопрос. Если математика – это целиком и полностью человеческое изобретение, универсальна ли она? Иначе говоря, если существуют внеземные цивилизации, будет ли их математика такой же, как наша? Карл Саган (1934–1996) полагал, что ответ на последний вопрос утвердительный. В своей книге «Космос» Саган, в частности, размышлял о том, какого рода сигналы передавала бы в космос разумная цивилизация, и писал: «Крайне маловероятно, чтобы какой-нибудь естественный физический процесс генерировал радиосообщение, содержащее только простые числа. Получив подобное сообщение, мы можем заключить, что где-то есть цивилизация, которая любит простые числа (пер. А. Сергеева )». Но можно ли утверждать это с уверенностью? Недавно физик и математик Стивен Вольфрам в своей книге «Наука нового типа» («A New Kind of Science ») утверждал, что так называемая «наша математика», вероятно, соответствует лишь одному из богатейшего ассортимента «вкусов» математики (Wolfram 2002). Например, вместо того, чтобы описывать природу при помощи законов, выраженных в виде математических уравнений, мы могли бы пользоваться законами иного типа, воплощенными в виде простых компьютерных программ. Более того, некоторые космологи в последнее время стали обсуждать гипотезу, согласно которой наша Вселенная – всего лишь составная часть множественной Вселенной или мультиверса , огромного ансамбля вселенных. Если множественная Вселенная и вправду существует, вправе ли мы ожидать, что в других вселенных будет такая же математика? Специалисты по молекулярной биологии и психологии познания предлагают совершенно иную точку зрения, основанную на изучении свойств и способностей мозга. По представлениям некоторых ученых, математика – это нечто вроде языка. Иными словами, согласно «когнитивному сценарию», после того как человечество сотни тысяч лет таращилось на свои две руки, две ноги и два глаза, появилось абстрактное определение числа 2 – примерно так же, как возникло слово «птица», обозначающее множество двукрылых теплокровных пернатых существ, умеющих летать. По словам французского нейрофизиолога Жан-Пьера Шанжё: «С моей точки зрения, аксиоматический метод (применяющийся, например, в евклидовой геометрии. – М. Л. ) – выражение способностей головного мозга, связанное с его использованием. Ведь основная характеристика языка – это именно его генеративный характер (Changeux and Connes 1995)». Однако, если математика – тот же язык, как объяснить, что, хотя дети легко учатся родному языку, математика дается многим с таким трудом? Марджори Флеминг (1803–1811), шотландская девочка-вундеркинд, не дожившая до 9 лет, оставила дневник – более девяти тысяч слов прозы и около пятисот стихотворных строк – где, помимо всего прочего, очаровательно описывает, с какими сложностями сталкиваются дети при изучении математики. В одном месте Марджори жалуется: «А теперь я хочу рассказать тебе, дорогой дневник, как страшно и ужасно мучает меня таблица умножения, ты себе и представить не можешь! Самое кошмарное – это восемь на восемь и семь на семь, это противно самой природе!» — 11 —
|