построение математической модели изучаемого объекта (операции); количественное решение модели и нахождение оптимального решения; проверка адекватности модели и найденного решения анализируемой ситуации; корректировка и обновление модели. Количество конкретных всевозможных моделей почти так же велико, как и число проблем, для решения которых они разработаны. Подробное их рассмотрение выходит за рамки настоящего учебника и является предметом специальной учебной дисциплины, поэтому назовем лишь наиболее распространенные типы моделей. Модели теории игр. Большинство хозяйственных операций можно рассматривать как действия, совершаемые в условиях противодействия. К противодействиям следует относить такие, например, факторы, как авария, пожар, кража, забастовка, нарушение договорных обязательств и т.п. Однако наиболее массовым случаем противодействия является конкуренция. Поэтому одним из важнейших условий, от которого зависит успех организации является конкурентоспособность. Очевидно, что возможность прогнозировать действия конкурентов является существенным преимуществом для любой коммерческой организации. Принимая решение, следует выбирать альтернативу, позволяющую уменьшить степень противодействия, что, в свою очередь, снизит степень риска. Такую возможность предоставляет менеджеру теория игр, математические модели которой побуждают анализировать возможные альтернативы своих действий с учетом возможных ответных действий конкурентов. Первоначально разработанные для военно-стратегических целей, модели теории игр применяются и в бизнесе для прогнозирования реакции конкурентов на принимаемые решения, например, на изменение цен, выпуск новых товаров и услуг, выход на новые сегменты рынка и т.п. Так, принимая решение об изменении уровня цен на свои товары, руководство фирмы должно прогнозировать реакцию и возможные ответные действия основных конкурентов. И если с помощью модели теории игр будет установлено, что, например, при повышении цены конкуренты не сделают того же, организация, чтобы не попасть в невыгодное положение, должна отказаться от этой альтернативы и поискать другое решение проблемы. Следует, однако, отметить, что используются эти модели довольно редко, т.к. они оказываются слишком упрощенными по сравнению с реальными экономическими ситуациями, настолько изменчивыми, что полученные прогнозы бывают не слишком достоверны. Модели теории очередей. Модели теории очередей (или оптимального обслуживания) используются для нахождения оптимального числа каналов обслуживания при определенном уровне потребности в них. К ситуациям, в которых такие модели могут быть полезны, относятся, например, определение количества телефонных линий, необходимых для ответов на звонки клиентов, троллейбусов на маршруте, необходимых, чтобы на остановках не скапливались большие очереди, или операционистов в банке, чтобы клиенты не ждали, пока ими смогут заняться и т.п. Проблема при этом заключается в том, что дополнительные каналы обслуживания (больше телефонных линий, троллейбусов или банковских служащих) требуют дополнительных ресурсов, а их загрузка неравномерна (избыточная пропускная способность в одни периоды времени и появление очередей в другие). Следовательно, нужно найти такое решение, которое позволяет сбалансировать дополнительные расходы на расширение каналов обслуживания и потери от их недостатка. Модели теории очередей как раз и являются инструментом нахождения такого оптимального решения. — 33 —
|