Если игрок B придерживается своей минимаксной стратегии, то ему гарантирован проигрыш не больше ?. Принцип минимакса. Если оба игрока разумны, то игрок A будет выбирать свою максиминную стратегию, а игрок B – минимаксную. Пример. Расширенная матрица игры "поиск" имеет вид:
нижняя цена игры ? = -1, верхняя цены игры ? = 1. Таким образом, если игрок будет делать личные ходы, а его противник об этом узнает, то игрок A получит минимальный выигрыш -1, то есть он будет в проигрыше, а игрок B получит минимальный проигрыш 1, то есть он будет выигрывать. Аналогичное утверждение справедливо и для игрока B. Определение. Игра называется игрой с седловой точкой, если нижняя и верхняя цена игры совпадают. Общее значение нижней и верхней цены игры ? = ? = ? называется чистой ценой игры. Седловой точке соответствует пара минимаксных стратегий, которые называются оптимальными, а их совокупность называется решением игры. Примечание. Седловой точкой матрицы называется такой её элемент, который является минимальным в своей строке и максимальным в своём столбце. Свойство решения игры: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии (это отклонение может лишь ухудшить его положение). Чистая цена игры в игре с седловой точкой является тем значением выигрыша, которое в игре разумных противников игрок A не может увеличить, а игрок B уменьшить. Пример 2. Игра "защита от воздушного налёта". Сторона A обороняет от воздушного налёта два объекта, имея два орудия. Каждое орудие может поразить только тот самолёт, который находится в его зоне действия, но для этого оно должно до входа самолёта в зону следить за ним. Обстрелянная цель поражается. Сторона B атакует эти объекты двумя самолётами, которые могут быть направлены к любому объекту. Каждый самолёт может маневрировать, например, показав, что он направляется к объекту № 2, самолёт № 2 перед входом в зону действия орудия № 2, изменяет маршрут и атакует объект № 1. Целью стороны A является защита, а стороны B поражение максимального количества объектов. Стратегии сторон:
|