Удивительная логика

Страница: 1 ... 2829303132333435363738 ... 132

Второй способ преобразования простых суждений, называемый превращением , заключается в том, что у суждения меняется связка: положительная на отрицательную, или наоборот. При этом предикат суждения заменяется противоречащим понятием (т. е. перед предикатом ставится частица НЕ ). Например, то же самое суждение, которое мы рассматривали в качестве примера для обращения Все акулы являются рыбами, преобразуется путем превращения в суждение Все акулы не являются не рыбами. Это суждение может показаться странным, ведь обычно так не говорят, хотя на самом деле перед нами более короткая формулировка той мысли, что ни одна акула не может быть таким существом, которое не является рыбой, или что множество всех акул исключается из множества всех существ, которые не являются рыбами. Субъект акулы и предикат не рыбы суждения, получившегося в результате превращения, находятся в отношении несовместимости (рис. 28).

Приведенный пример превращения демонстрирует важную логическую закономерность: любое утверждение равно двойному отрицанию, и наоборот. Как видим, исходное суждение вида А в результате превращения стало суждением вида Е. В отличие от обращения превращение не зависит от характера отношений между субъектом и предикатом простого суждения. Поэтому суждение вида А всегда превращается в суждение вида Е, а суждение вида Е – в суждение вида А. Суждение вида I всегда превращается в суждение вида О, а суждение вида О – в суждение вида I .

Третий способ преобразования простых суждений – противопоставление предикату – состоит в том, что сначала суждение подвергается превращению, а потом обращению. Например, чтобы путем противопоставления предикату преобразовать суждение Все акулы являются рыбами, надо сначала подвергнуть его превращению. Получится: Все акулы не являются не рыбами. Теперь надо совершить обращение с получившимся суждением, т. е. поменять местами его субъект акулы и предикат не рыбы. Чтобы не ошибиться, вновь прибегнем к установлению распределенности терминов с помощью круговой схемы (субъект и предикат в этом суждении находятся в отношении несовместимости) (рис. 29).

На круговой схеме видно, что и субъект, и предикат распределены (и тому, и другому термину соответствует полный круг), следовательно, мы должны сопроводить как субъект, так и предикат квантором все. После этого совершим обращение с суждением Все акулы не являются не рыбами. Получится: Все не рыбы не являются акулами. Суждение звучит непривычно, однако это – более короткая формулировка той мысли, что если какое-то существо не является рыбой, то оно никак не может быть акулой, или что все существа, которые не являются рыбами, автоматически не могут быть и акулами в том числе.

— 33 —
Страница: 1 ... 2829303132333435363738 ... 132