Как мы видим то, что видим

Страница: 1 ... 5556575859606162636465 ... 167

Еще триста пятьдесят лет назад Декарт так описывал схему восприятия сложного образа: «Если я нашел путем независимых мыслительных операций отношения между А и В , между В и С , между С и D , наконец, между D и Е , то это еще не позволяет мне понять отношения между А и Е . Истины, усвоенные ранее, не дадут мне точного знания об этом, если я не смогу одновременно припомнить все истины. Чтобы помочь делу, я буду просматривать эти истины время от времени, стимулируя свое воображение таким образом, что, осознав <...> один факт, оно тут же перейдет к следующему. Я буду поступать так, пока не научусь переходить от первого звена к последнему настолько быстро, что ни одна из стадий этого процесса не будет «спрятана» в моей памяти, и я смогу созерцать своим мысленным взором всю картину сразу». Как мы знаем, мозг примерно по этой схеме управляет движением глаз. И вот в случае «невозможной фигуры» такой метод познания подводит...

Рис. 33. «Невозможная фигура»: треугольник Пенроуза. Его тайна в том, что мы пытаемся зрительно вообразить на плоскости фигуру, которая на самом деле объемна (показана слева)

Давайте посмотрим, почему это случается. Анализ требует терпения, но в конце концов мы будем вознаграждены: откроется тайна не только треугольника Пенроуза, но и других «невозможных» изображений.

Итак, пересекающиеся поверхности 3 и 1 нашего треугольника образуют в точке А пересечение типа «Т» (см. рис. 34). Это значит, что поверхность 1 лежит под поверхностью 3 : об этом говорит наш жизненный опыт. Смотрим на точку В – там опять пересечение «Т», образованное плоскостями 3 и 4 : поверхность 3 лежит под поверхностью 4 . Переходим к точке С – опять такое же пересечение и, значит, поверхность 4 лежит под поверхностью 1 . Но ведь мы только что убедились, что 4 не может быть под 1 , так как 4 лежит над 3 , а 3 – над 1 . Следовательно, 4 должна находиться над 1 , а тип пересечения (Т) свидетельствует об обратном. Глаз получает две взаимоисключающие информации: созерцание каждого узла говорит, что все три бруска перпендикулярны друг другу, обход же взором отказывается строить на этих условиях объемную фигуру.

Рис. 34. Всего лишь восемь узлов. Ими исчерпывается всё разнообразие пересечения поверхностей, и наше зрение это очень хорошо знает

Как же выйти из противоречия? Очень просто: выкинуть один из фактов (излишнее знание только мешает). Закройте пальцем верхнюю вершину, и стороны треугольника выскочат из плоскости листа! Псевдоплоская фигура обретает объемность, все три брусочка оказываются перпендикулярны друг другу. Трюки, подобные треугольнику Пенроуза, очень любил рисовать голландский художник Морис Эсхер (или Эшер, как иногда на немецкий лад читают его фамилию). То и дело на его картинах встречаются «струящийся вверх» водопад, таинственной формы строения, направленная все время вниз по замкнутому кольцу лестница...

— 60 —
Страница: 1 ... 5556575859606162636465 ... 167