У оператора «Энигмы» имелось шесть кабелей, то есть можно было осуществлять перестановку букв в шести парах букв. Переставляемые с помощью штепсельной коммутационной панели буквы являются частью задаваемой начальной установки машины и поэтому должны быть оговорены в шифровальной книге. На рисунке 37 схематично показана компоновка машины с установленной штепсельной коммутационной панелью. Поскольку здесь используется шестибуквенный алфавит, перестановка проводится только для одной пары букв, a и b. Рис. 37 Штепсельная коммутационная панель устанавливается между клавиатурой и первым шифратором. Вставляя кабели, можно переставлять местами пары букв; в нашем случае b меняется местами с а. Теперь зашифровывание b производится по пути, по которому прежде происходило зашифровывание а. При работе на реальной «Энигме», использующей алфавит с 26 буквами, у пользователя имелось шесть кабелей, позволяющих осуществлять перестановку в шести парах букв. В конструкции машины Шербиуса применяется также кольцо , о котором пока не упоминалось. Хотя кольцо оказывает определенное влияние на процесс шифрования, но это наименее значимая часть «Энигмы», и я решил его здесь не рассматривать. (Читателям, кто хочет узнать о роли кольца, следует обратиться к книгам, приведенным в списке для дальнейшего чтения, например, «Захват Энигмы» Дэвида Кана. Там же указаны и адреса двух веб-сайтов с прекрасными эмуляторами «Энигмы», которые дадут вам возможность поработать с виртуальной «Энигмой»). Теперь, когда мы познакомились со всеми основными элементами машины «Энигма» Шербиуса, и, зная количество кабелей штепсельной коммутационной панели и количество возможных расположений и ориентации шифраторов, мы сможем определить число ключей. Ниже перечислены все параметры машины и соответствующее число возможных состояний для каждого: Ориентация шифраторов. Каждый из 3 шифраторов может быть установлен в одном из 26 положений. Таким образом всего имеется 26 x 26 x 26 начальных установок: 17 576 Расположения шифраторов. Три шифратора (1, 2 и 3) могут располагаться в любом порядке из указанных ниже шести возможных: 123, 132, 213, 231, 312, 321. 6 Штепсельная коммутационная панель. Количество возможных способов соединений, с помощью которых осуществляются перестановки букв в шести парах из 26 букв, огромно: 100 391 791 500 Полное число ключей. Полное число ключей получается перемножением этих трех чисел: 17 576 x 6 x 100 391 791 500 ~ 10 000 000 000 000 000 — 99 —
|