Риторика. Теория и практика речевой коммуникации

Страница: 1 ... 151152153154155156157158159160161 ... 389

Первое рассуждение:

Натриевая селитра хорошо растворима в воде;

Калиевая селитра хорошо растворима в воде;

Аммиачная селитра хорошо растворима в воде;

Кальциевая селитра хорошо растворима в воде;

Никаких иных селитр больше неизвестно;

Все селитры хорошо растворимы в воде.

Второе рассуждение:

Круг пересекается прямой в двух точках;

Эллипс пересекается прямой в двух точках;

Парабола пересекается прямой в двух точках;

Гипербола пересекается прямой в двух точках;

Круг, эллипс, парабола и гипербола —

это все виды конических сечений;

Все конические сечения пересекаются прямой

в двух точках.

Данные умозаключения различаются по содержанию. Форма же свя­зи мыслей в них одна и та же. В обоих случаях рассуждение развивается индуктивно, т.е. от знания об отдельных предметах к знанию о классе, от знания одной степени общности к новому знанию большей степени общности. В индуктивном умозаключении возможен ход мысли не толь­ко от отдельных предметов к общему, но и от подклассов к общему.

Индуктивное умозаключение выступает в двух видах: полная индукция и неполная индукция. Полной индукцией называется такой вид индуктивного умозаключения, в результате которого делается общий вывод обо всем классе каких-либо предметов на основании знания о всех без исключения предметах этого класса.

Например:

В понедельник на прошлой неделе шел дождь;

Во вторник шел дождь;

В среду шел дождь;

В четверг шел дождь;

В пятницу шел дождь;

В субботу шел дождь;

В воскресенье шел дождь;

На прошлой неделе все дни шел дождь.

Зная, что неделя не имеет никаких других дней, кроме упомяну­тых в посылках, вполне правомерно сделать вывод: на прошлой не­деле все дни шел дождь.

В результате полной индукции получено в первых двух рассмот­ренных примерах знание о том, что все селитры хорошо растворимы в воде, а также что все конические сечения пересекаются прямой в двух точках. Полная индукция характеризуется тем, что общий вывод из­влекается из ряда суждений, сумма которых полностью исчерпывает все случаи данного класса. То, что утверждается в каждом суждении о каждом отдельном предмете данного класса, в выводе относится ко всем входящим в него предметам. Формула полной индукции такова:

S1 есть Р;

S2 есть Р;

— 156 —
Страница: 1 ... 151152153154155156157158159160161 ... 389