Экспериментальная психология

Страница: 1 ... 4344454647484950515253 ... 321

Формулы коэффициента корреляции

1. При сравнении порядковых данных применяется коэффициент ранговой корреляции по Ч. Спирмену (р):

p = 6?d2/N(N2-l),

где d – разность рангов (порядковых мест) двух величин; N – число сравниваемых пар величин двух переменных (X и Y). Пример вычисления р дан в таблице 3.

2. При сравнении метрических данных используется коэффициент корреляции произведений по К. Пирсону (г):

r = ?xy/N?x?y,

где х – отклонение отдельного значения X от среднего выборки (Мх); у – то же для Y; ?х – стандартное отклонение для X; ?у – то же для Y; N – число пар значений X и Y.

Рекомендации по анализу коэффициентов корреляции

  1. R – это не процент соответствия переменных, а только степень связи.
  2. Сравнение коэффициентов дает только неметрическуюинформацию, т. е. нельзя говорить, на сколько или во сколько раз один больше или меньше другого. Они сравниваютсяв оценках «равно – неравно», «больше – меньше». Можно сказать, что один коэффициент превышает (слабо, заметно, очень заметно) другой, но какова величина этого превышения говорить нельзя.
  3. Существуют явления, в которых заведомо известно, чтомежду ними слабая (или сильная) связь. Тогда R приобретает не абсолютный, а относительный характер. Так, для слабой связи R = 0,2 может считаться высоким показателем, а для сильной и R = 0,7 будет считаться низким.
  4. Иногда и слабая корреляция заслуживает внимания, еслиэто обнаружено впервые, т. е. выявлена новая связь.
  5. Надежность R зависит от надежности исходных данных.

4.6.3.5. Нормальное распределение

Мы уже знакомы с понятиями «распределение», «полигон» (или «частный полигон») и «кривая распределения». Частным случаем этих понятий является «нормальное распределение» и «нормальная кривая». Но этот частный вариант очень важен при анализе любых научных данных, в том числе и психологических. Дело в том, что нормальное распределение, изображаемое графически нормальной кривой, есть идеальное, редко встречающееся в объективной действительности распределение. Но его использование многократно облегчает и упрощает обработку и объяснение получаемых в натуре данных. Более того, только для нормального распределения приведенные коэффициенты корреляции имеют истолкование в качестве меры тесноты связи, в других случаях они такой функции не несут, а их вычисление приводит к труднообъяснимым парадоксам.

В научных исследованиях обычно принимается допущение о нормальности распределения реальных данных и на этом основании производится их обработка, после чего уточняется и указывается, насколько реальное распределение отличается от нормального, для чего существует ряд специальных статистических приемов. Как правило, это допущение вполне приемлемо, так как большинство психических явлений и их характеристик имеют распределения, очень близкие к нормальному.

— 48 —
Страница: 1 ... 4344454647484950515253 ... 321