Наиболее известное достижение в моделировании нейронных сетей – перцептроны Розенблатта [325, 398, 475]. Это технические устройства, выполняющие функции восприятия и памяти, позволяющие распознавать не очень сложные объекты (например, буквы алфавита). При этом перцептроны обладают способностью обучаться. Теоретической основой перцептронов выступает «модель мозга», под которой Ф. Розенблатт понимал «любую теоретическую систему, которая стремится объяснить физиологические функции мозга с помощью известных законов физики и математики, а также известных фактов нейроанатомии и нейрофизиологии» [325, с. 23]. Инженерное воплощение перцептрона на входе имеет матрицу из фотоэлементов, объединенных с простыми электронными схемами так, что освещенному фотоэлементу соответствует сигнал +1, а не освещенному – ноль. За этой матрицей датчиков, сопоставимых с рецепторными клетками сетчатки глаза, размещен слой электрических элементов, каждый из которых соединен с каким-либо одним фотоэлементом случайным образом. Электрические элементы обладают порогом срабатывания и выдают сигналы «Да» или «Нет» в виде +1 или –1. Если сумма приходящих от фотоэлементов сигналов меньше порога срабатывания, то на выходе злектроэлемента выдается сигнал –1, если больше – сигнал +1. Сколько и как просуммировалось сигналов на входе электрозлемента – не важно, главное – превышает или нет эта сумма пороговую величину элемента. Электрозлементы далее упорядочение соединены с третьим слоем элементов – усилителей сигнала. Коэффициент усиления может регулироваться по общей для всех усилителей команде. Каждый электроэлемент в совокупности с усилителем является «ячейкой памяти» и носит название «ассоциативный прибор». Сигналы от этих ассоциативных приборов подаются на входное устройство, именуемое «решающим прибором» и суммирующее все сигналы от элементов памяти. Решающий прибор также обладает порогом срабатывания и двумя выходными сигналами; если сумма сигналов от усилителей больше нуля, выдается ответ +1, если меньше нуля, то –1, независимо от того, откуда и от каких элементов предыдущего слоя пришли на его вход сигналы. Таким образом, перцептрон способен разделить любые комбинации состояний фотоэлементов на своем входе на два класса, а это есть аналог различения двух объектов. Но простым различением дело не ограничивается. Перцептрон в состоянии различить не просто разные объекты, но и вариации этих объектов, т. е. он способен производить классификацию. Например, он может сгруппировать в два класса множество различных начертаний двух букв. В процессе распознавания он может ошибаться, но тут же самостоятельно исправляется за счет обучающего эффекта. Обучающее воздействие реализуется в виде изменения коэффициента усиления при ошибке, что расценивается как наказание и требует повторного акта распознавания этого объекта. Повторная ошибка влечет еще большее изменение коэффициента усиления. В конце концов задача неизбежно решается правильно. — 249 —
|