Последний по существу есть пороговое устройство, технически осуществляемое как система из электронной батареи, диода и резистора. После срабатывания генератора потенциалов действия--импульс поступает на выходной блок, представляющий собой [. формирователь импульсов. Применение печатных микросхем^ позволяет инженерное воплощение нейрона сжать до размеров i булавочной головки. Поскольку поведение естественного нейрона характеризуется значительными нелинейностями (разрывами, скачками и прочими особенностями импульсации), то оно трудно поддается математическому описанию, зато много легче моделируется технически «схемами на транзисторах и диодах – элементах, которые сами обладают нелинейными характеристиками» [106, с. 59–60]. В последние годы появляются сведения о моделировании нейронов не в традиционном варианте – с двумя стабильными состояниями при постоянном пороге возбудимости, а с переменным порогом, уровень которого меняется благодаря активности самого искусственного нейрона [228]. Моделирование работы мозга Разумеется, что никакая модель нейрона (впрочем, как и сам отдельный нейрон) не способна дать «на выходе» психического эффекта, скажем, в виде узнавания, предпочтения и т. п. Для этого следует создать модель, имитирующую работу совокупности взаимодействующих нейронов. На языке инженерного моделирования эту совокупность чаще всего называют нейронной сетью. На языке физиологии (и психологии) эту совокупность чаще всего называют мозгом, подразумевая в первую очередь кору головного мозга и, конечно, не забывая, что мозг – только один из отделов целостной нервной системы, что центральная нервная система (ЦНС) никак не может функционировать без периферической НС. Нейронные сети уже могут реализовать один из важнейших принципов работы естественных нейронных ансамблей – упорядоченность в случайном, порядок из хаоса [300, 301, 302, 390, 391]. Классической иллюстрацией реализации этого принципа является сокращение мышцы. На ее эффекторы посылаются сигналы от сотен и сотен мотонейронов, каждый аксон которых разветвляется на десятки коллатералей. Каждая коллатеральная ветвь иннервирует отдельное мышечное волокно, вызывая в нем одиночный цикл напряжения-расслабления. Но в результате несин-хронизированного наложения сокращений огромного множества волокон производится плавное сокращение всей мышцы. Получается, что, хотя одиночный нервный импульс подчиняется закону «все или ничего», общий ответ представляет собой «градуальную реакцию». Для компоновки сетей используются как описанные выше модели отдельных нейронов, так и отличающиеся от них в некоторых деталях. Например, С. Дейч приводит квазилинейную модель нейрона, способную имитировать действие медиаторов на работу нервной клетки, а в совокупности с другими такими же моделями реализующую описанный только что принцип «порядок из хаоса» [ 106]. Практика моделирования нейронных сетей демонстрирует их значительное разнообразие по составу, структуре, функциям. Нейронные сети с обратной связью позволяют моделировать процессы памяти и обучения. — 248 —
|