ЯМР исследования в психологии

Страница: 1 ... 3334353637383940414243 ... 177

При это коррелоны бывают: унитарные S1R [А, Б, В...], ли­нейные дискретные S1, S2, S3 и т.д. R [А, Б, В...], квазилинейные не­прерыв­ные Sx R [А, Б, В...]. Унитарные коррелоны могут быть обра­зованы любым субстратным показателем. Примерами линей­ных дискрет­ных­ коррелонов являются меридианные (Уразаев К.Ф., 1998; Пор­тянко В.Н., 1999; Дик Е.Н., 1999), иридологические (Са­фина Р.Б., 1999), хросомные «ли­нейки» (Фазлиахметова Г.Ф., 1999), гороскоп - сезонные и жизненные психоритмы (Вол­кова Л.В., 1998; Фаизова Р.Г., 1999), распре­деление микро­элементов по час­тоте главной спек­тральной состав­ляющей в спектре поглощения (Велик­жанина Т.Б., 1998). В качестве непрерывного коррелона вы­ступает динамика вы­званного потенциала (Костенко А.Л., 1999), спектры ЭЭГ, ЭКГ, УФ и ИК - спектры биожидкостей.

Линейный (квазилинейный) коррелон-геном, метаболические цепи, меридианы и т.п. - называется волновым, если динамика кор­реляций психи­ческого свойства вдоль субстрата имеет вол­новой (синусоидальный) вид, который выявляется методом косинор- ана­лиза (Halberg F., Johnson E.A., Nelson W., 1972; Чернышев М.К., 1976; Емельянов И.П., 1976, 1986; и др.). Как показали иссле­дова­ния, в этом случае в один волновой пакет объединяются те психи­че­ские свойства, которые «записаны» на одном субстрате с одина­ко­вым периодом и фазой. При различии фаз формируются пучки вол­новых пакетов, следующих друг за другом и образующих целостную архитектонику ритмов.

Унитарный коррелон также может быть волновым. Это рас­ши­ре­ние основывается на теории парабиоза Н.Е. Вве­денского - Л.Л. Ва­сильева. В этом случае различаются три варианта функ­цио­наль­ных связей между субстратом S и психическими свой­ствами A:

линейная связь, классическая;

параболическая, додсоновская;

волновая, васильевская.

Первые две группы хорошо известны и обычно аппрок­сими­ру­ются психологами с помощью линейных и квадра­тичных фу­н­кций (Суходольский Г.В., 1972). Третья зависимость более слож­ная и от­части может описываться кубической функцией.

Коррелонная концепция открывает общий подход к анализу всех трех случаев волновым уравнением.

Линейная связь может рассматриваться, как медленно-волно­вая, т.е. синусоида с большим периодом. Мы в практике эти случаи ап­проксимируем волной с периодом T = 16 сигм из следующего рас­чета. Предполагается, что весь диапазон изменчивости субстрат­ного показателя S охватывает 4 сигмы, что соответствует одной чет­вер­той периода. Если, как это принято в статистике (см. В.Ю. Ур­бах, 1963), диапазон изменчивости оценивать в 6 сигм, то тогда мо­дель­ный период будет равен Т = 24 сигмам. Как показывает наш опыт, обычно такое расширение диапазона поиска избыточно.

— 38 —
Страница: 1 ... 3334353637383940414243 ... 177