Можно ввести также качественную характеристику отношения управления между отдельными персонажами. Для этого похож образом нужно подсчитать «степень» доминирования данного персонажа над другими. Например, член АВ интерпретируется как доминирование А над В с весом 1, член ВСАВ — как доминирование над С с весом 1, В над А с весом 2, В над В с, весом 3. Повторяющееся вхождение символа в одночлен учитывается отдельно и не зависит. Например, член АВСАВ интерпретируется и как доминирование над В с весом 1, и как доминирование с весом 4. Таким образом, суммарное доминирование в этом члене А над В равно 5. Теперь можно составить матрицу отношений, показывающую с какой «силой» персонажи воздействуют друг на друга:
Мы вычислили доминирование в каждом отдельном члене многочлена и просуммировали «поперсонажно» результаты. Подчеркнем, что доминирование «над самим собой» показывает качественную характеристику контроля управляющих воздействий «на себя» со стороны других. Один из простейших случаев «автодоминирования» мы видим на схеме, изображенной на рис. 33. Схеме соответствует многочлен Г=А+В+АВ+ВАВ, которому в свою очередь, соответствует матрица
Анализ этой матрицы показывает, что контроль над управлением собою персонажа В превосходит воздействие, которое оказывает на него А. Кроме того, персонажи А и В доминируют друг над другом с весом, равным 1. Конечно, такой анализ дает лишь огрубленную качественную характеристику 'потенциального доминирования персонажей и ничего не говорит об эффективности управления рефлексивным управлением, проводимым тем или иным персонажем, поскольку шкала доминирования, выбранная нами, условна. Связь Г-многочленов с Q-многочленами. Рассмотрим многочлен Q1=T+Tx+(T+Tx)y. В рамках этого многочлена только персонаж Y может проводить рефлексивное управление. Вспомнив, что А — другое имя персонажа X, а В—другое имя персонажа Y, 67 — 42 —
|