Персонаж Y начинает проводить имитацию рассуждения X. Для этого он должен проделать процедуру: но с одним существенным отличием: Y не является обладателем Пх. Он является обладателем того, что можно назвать «планшет Пx: с точки зрения Y». Это уже «вторичное отражение». Очевидно, что при этом могут появиться принципиальные отличия от первоначальной картины Пx:. Y не является также обладателем цели Пх и доктрины дx:. Он располагает лишь «Цx: с точки зрения Y» и «дx с точки зрения Y». Их мы обозначим соответственно Пху, Пху и Цху; процедура имитации рассуждения Х изобразится следующим образом: Предположим, что Y исходит из того, что доктрина Х заключается в нахождении оптимального варианта путем перебора (например, Y известно, что А» имеет в своем распоряжении ЦВМ). Кроме того, предположим, что Y отобразил плацдарм иначе, чем X, и что Y известен планшет Х (например, по агентурным данным). Предположим еще, что Y исходит из того, что его собственное отображение плацдарма является верным. Имитацию процедуры принятия решения Х он проводит, оперируя не со своим планшетом, а с тем, который с его точки зрения есть у противника. После того, как получено Y должен перевести это решение на свой собственный планшет: Теперь Y должен «нанести» на собственный планшет свою цель и применить свою доктрину, которая заключается в нанесении пометки на изображение маршрута, по которому Х должен «с точки зрения Y» прибыть в пункт Б. Этой точке соответствует точка местности, в которой Y устраивает засаду. В результате Y получает собственное решение, отнесенное к своему планшету: Объединив предыдущие выражения в единое выражение, мы получим обобщенное символическое изображение процедуры принятия решения в этой ситуации: Из рассмотренного условного примера видно, что стремление к математическому оптимуму игрока Х может явиться причиной его поражения, поскольку его рассуждение легко имитируемо. Изобразим теперь процедуру принятия решения Х в случае, когда он изображается многочленом T+[T+(Т+Тх)у]х. Для того, чтобы принять решение, Х должен проимитировать процедуру принятия решения Y, которую мы изобразили выше. Персонаж Х не располагает исходными элементами (Пху, Цxy, Дxy), которыми располагает Y. Х имеет «Цxy с точки зрения X», «Пху с точки зрения -X» и «Дxy с точки зрения X». Их естественно обозначить соответственно Цхух, Пхух и Дxyx. Процедура принятия решения в этом случае изобразится следующим образом: В этом соотношении легко просматривается общий закон, по которому производится построение «формул» для любых многочленов подобного типа. — 31 —
|