Конфликтующие структуры

Страница: 1 ... 2526272829303132333435 ... 102

Предположим, что плацдарм представляет собой несколько «населенных пунктов», а цель, стоящая перед X, — завезти в эти пункты грузы одним рейсом грузовика. Плацдарм отражается на «планшет» X. Возникает элемент Пх. Когда, мы употребляем термин «планшет», то подразумеваем всю систему знаковых средств, которыми фиксируется «объективная обстановка». Очевидно, что отображение может быть произведено с различной степенью точности, например, некоторые пункты могут быть пропущены, их конфигурация может быть искажена, могут быть нанесены лишние пункты и т.д. Но Х в дальнейшем будет оперировать сПх, а не с П. Поэтому то решение, которое он примет, будет в итоге отнесено на Пх и лишь затем, с большим или меньшим успехом, переведено на реальный плацдарм.

Персонаж Х имеет цель—Цх. В данном случае цель состоит в том, чтобы из пункта А перевезти грузы одним рейсом грузовика во все другие пункты.

Чтобы принять решение, в результате которого цель будет достигнута, Х должен произвести особое оперирование на своем планшете. Мы будем предполагать, что Х владеет вполне определенным способом решения задачи. Этот способ мы будем называть доктриной и обозначать Дx. Доктриной, например, может явиться метод линейного программирования, бросание игральной кости и т.д. В данном примере мы введем следующую доктрину: путем перебора вариантов находится кратчайший маршрут, который наносится на планшет. Полученная линия и является решением, нанесенным на планшет Пх.

Процедура принятия решения может быть изображена следующим образом.

1. Цель особым образом соотносится с планшетом. Огрубляя существо дела, можно сказать, что цель наносится» на планшет:

Цх/Пх

2. К планшету с нанесенной на негоцелью применяется доктрина.

(Цх/Пх)*Дх

3. Результатом этого оперирования является решение рх, отнесенное к планшету Пх.

Всю процедуру принятия решения можно изобразить следующим образом:

Предположим, что у персонажа Х есть противник Y, который изображается многочленом' Т+ (Т+Тх)у. Таким образом, всей ситуации соответствует многочлен

Q=T+Tx+(T+Tx)y.

Теперь рассмотрим процедуру принятия решения персонажем Y. Предположим, Y стремится овладеть грузовиком, на котором Х развозит грузы. Засада может быть устроена только в районе пункта Б (пусть этот пункт находится в лесу), но для этого необходимо знать, из какого пункта грузовик будет следовать в пункт Б. Никакой информации о действительном маршруте у Y нет. Для того чтобы принять решение, он должен проимитировать рассуждение Х и вывести «чужое» решение.

— 30 —
Страница: 1 ... 2526272829303132333435 ... 102