Конфликтующие структуры

Страница: 1 ... 1516171819202122232425 ... 102

Оптимальное решение в условиях дилеммы заключенного невозможно. Отсутствие возможности найти оптимальное решение само по себе не является парадоксом. Парадокс возникает перед игроком, который, имея определенную модель противника, принимает оптимальное решение, которое сразу же оказывается убийственным для него. Обратим внимание, что если бы игрок Х был «устроен» иначе, например, был бы «вооружен» оператором осознания w =1+x+ух, который бы приводил его в состояние

Q=T+(Q+Qy)x ,

то никакой дилеммы перед ним не возникало бы. Он должен стрелять. Действительно, предположим, что игрок Х принял решение не стрелять; поскольку Y - «всевидящий глаз», читающий его мысли, то он примет решение стрелять, чтобы выиграть рубль. Поэтому ему остается только другая альтернатива - стрелять. При этом, с позиции X, решение Y не определено. Мы ведь не предполагаем, что противники исповедуют принцип «зло за зло»[*].

Таким образом, мы приходим к выводу, что дилемма порождается симметрической рефлексивной структурой внутреннего мира игрока.

Дилемму заключенного нельзя разрешить, но ее можно объяснить.

Рассмотрим следующий многочлен по негативной формой.

Q=T+(T+Txз}x+(T+Tx+Tx2+Ty)y.

Как обычно, мы предполагаем, что такова система Q с позиции внешнего исследователя. Поставим задачу—сравнить «внутренние миры» персонажей с картиной, лежащей перед исследователем. Для этого построим следующую таблицу. (см. выше)

Пустые клетки второй и третьей строк соответствуют членам, которые присутствуют с позиции внешнего исследователя, но отсутствуют во внутренних мирах соответствующих персонажей. Из таблицы видно, что у персонажей Х и }' есть еще «лишние» члены, которых нет в многочлене с позиции внешнего исследователя: это Тх3 и Тх2.

Условимся особым образом изображать члены, которые «неизвестны» персонажам. Член Тх «неизвестен» персоналу X, поскольку его внутренний мир содержит только два члена Т и Тх3. Условимся этот факт фиксировать следующим образом: Тхх-. Читается это так:

«Тх не лежит перед X».

Аналогично обозначим «неизвестность» персонажу Х остальных элементов:

Тх4х-, Тух-, Тхух-, Тх2ух,Ty2x-

Члены, неизвестные персонажу Y, обозначим соответственно Tx4y, Txyy-, Тх2уу, Ту2у-.

Теперь мы можем дополнить многочлен Q. этими членами и, распространив на х- и у- закон дистрибутивности и вынеся их за скобку, получим

Q*=T+(T+Tx3}x+(T+Tx+Tx2+Ty)y+

+ (Tx4+Ty+Txy+Tx2y+Ty2)x-+ (Тх4+Тху+Тх2у+Ту2)y-.

— 20 —
Страница: 1 ... 1516171819202122232425 ... 102