Дифференциальная психология

Страница: 1 ... 338339340341342343344345346347348 ... 597

Семь факторов, вынесенных в верхнюю часть таблицы, соответствуют терстоуновским «первичным интеллектуальным способностям», описанным выше и обозначенным теми же самыми буквами.

Очевидно, что описание математического базиса или вычислительных процедур факторного анализа выходит за рамки данной книги. Множество разных методов анализа, преобразующего набор переменных в общие факторы, или измерения, было развито Келли (33), Хотеллингом (30), Бартом (9), Холзинге-ром (29), Трионом (60, 61), Терстоуном (55), Гуттманом (27), Ригли (64) и другими. Несмотря на различие исходных позиций, большинство этих методов приводит к результатам, которые не очень отличаются друг от друга. В настоящее время наиболее распространенными техниками являются те, которые были предложены Терстоуном (55). Кратко и сравнительно доступно узнать об этих техниках можно у Гилфорда (25, гл. 16) и у Адкока (1). Более подробное рассмотрение методологии факторного анализа можно найти у Фрухтера (22). На более сложном уровне об этом можно прочесть в классической работе Терстоуна «Муль-тифакторный анализ» (55).

Однако понимание результатов факторного анализа доступно не только тем, кто овладел специализированной методологией. Даже не зная о том, как вычисляются значимые факторы, студент может узнать, как используется факторная матрица при интерпретации факторов и их наименовании. Это потребует скорее психологического инсайта, чем статистической подготовки. Чтобы понять сущность конкретного фактора, мы просто изучаем тесты, в которых интересующий нас фактор имеет высокую значимость, и стараемся вскрыть общие для них психологические процессы. Чем больше количество тестов, в которых данный фактор имеет высокую значимость, тем точнее мы можем определить сущность фактора.

Процесс интерпретации факторов можно проиллюстрировать на примере таблицы 14. Прежде всего, мы должны отме-


434 Дифференциальная психология

тить, что значимости фактора выражаются на одной и той же шкале корреляционных коэффициентов, то есть от —1,00 через 0 до +1,00. Действительно, значимости факторов можно рассматривать как корреляции каждого теста с фактором (или с тем, что является общим для группы тестов). Очень низкие значимости можно пропускать, поскольку они могут представлять собой лишь случайные отклонения от ноля, — точно так же, как низкая корреляция может быть несущественным отклонением от ноля. Более того, даже будучи статистически значимыми, низкие значимости фактора мало помогают в его идентификации. Мы не сможем проникнуть в сущность фактора, изучая тест, который имеет с ним мало общего.

— 343 —
Страница: 1 ... 338339340341342343344345346347348 ... 597