Важным шагом вперед в исследовании энергетического обмена мозга является метод, разработанный Л. Соколовым (L. Sokoloff) с сотрудниками в Национальном институте охраны психического здоровья. Этот метод позволяет визуально определять интенсивность энергетического обмена в клетках мозга. Нейроны приспосабливают потребление глюкозы к удовлетворению своих метаболических потребностей в данный момент. Следовательно, в активном состоянии они поглощают ее быстрее, чем в покое. Поглощенная глюкоза обычно претерпевает быстрые превращения; ее химический аналог, 2-дезоксиглюкоза, поглощается клетками точно так же, но не подвергается метаболизму. Если ввести в кровь дезоксиглюкозу с радиоактивной меткой, то она накопится в нейронах, и скорость накопления послужит показателем метаболической активности клетки. Накопление радиоактивной дезоксиглюкозы можно установить и измерить, накладывая тонкие срезы замороженного мозга на радиочувствительную пленку. На проявленной пленке выявляются участки, богатые меченым веществом. Эта методика открыла совершенно новую область исследований мозга, поскольку она позволяет установить, какие клетки в головном мозгу были активны во время данного эксперимента. Например, воздействуя световым стимулом (вспышка) на правый или левый глаз, можно определить, какие именно области мозга получают зрительную афферентацию от того или другого глаза. В отличие от других органов тела, способных использовать разные виды «топлива» (сахара, жиры и аминокислоты), нейроны используют только глюкозу крови. Кроме того, в отличие от таких тканей, как мышцы, способных кратковременно функционировать в отсутствие кислорода, головной мозг полностью зависит от окислительного метаболизма. Если приток окисленной крови к мозгу прекратится, то через 10 секунд наступит потеря сознания, а затем появятся стойкие нарушения. Подобный же эффект вызывает любое состояние, сопровождающееся понижением содержания глюкозы в крови, например гипогликемия у больного диабетом, вызванная передозировкой инсулина. Хотя тонкие регуляционные механизмы обеспечивают постоянство кровяного давления и постоянный уровень кислорода и глюкозы в крови, очевидно, что чрезвычайная гибкость поведения, ставшая возможной благодаря большим размерам и емкости головного мозга млекопитающих, приобретена в процессе эволюции ценой высоких метаболических затрат. Что касается клеток, то нейроны чрезвычайно чувствительны: их активность нарушается токсическими веществами, попавшими в кровоток, а также мелкими молекулами, обычно присутствующими в крови, например аминокислотами. Такая чувствительность, возможно, служит причиной того, почему головной мозг отделен от общего кровообращения избирательной фильтрационной системой, называемой гематоэнцефалическим барьером. Эффективность этого барьера объясняется относительной непроницаемостью кровеносных сосудов головного мозга и наличием плотного слоя глиальных клеток (опорных мозговых клеток) вокруг них. Хотя такие мелкие молекулы, как молекулы кислорода, легко проникают сквозь барьер, большинство более крупных молекул, необходимых клеткам мозга, например молекулы глюкозы, должны захватываться активно с помощью специальных транспортных механизмов. О гематоэнцефалическом барьере следует помнить при создании лекарственных средств, действующих непосредственно на мозг: для того чтобы такие вещества проходили через барьер, они должны состоять из очень малых молекул или быть легко растворимыми в жировых мембранах глиальных клеток. Несколько участков мозга не защищены тематоэнцефалическим барьером; к ним относятся такие структуры, которые специфически реактивны в отношении содержащихся в крови гормонов, и такие, функция которых состоит в регуляции химического состава крови. — 95 —
|