Необратимость также играет свою роль в отсутствии у ребенка понимания сохранения объема. Он считает, что невозможно перелить жидкость из высокого стакана обратно в первый и сохранить при этом тот же ее объем. Здесь также наблюдается неразвитость логического мышления. Инвариантность массы. На рис. 7.5 представлены тесты, исследующие осознание ребенком понятия сохранения массы и демонстрирующие особенности дооперационального мышления. В этом случае наблюдается ситуация, схожая с той, что мы видели в эксперименте с жидкостью и стаканами. Ребенку показывают два одинаковых шарика из пластилина. На его глазах один шарик сминают и лепят из Рис. 7.4. Классический эксперимент «Жидкость и емкости», направленный на изучение понятия сохранения объема 338 Часть II. Детство Рис. 7.5. Эксперимент «Сохранение массы». В эксперименте, направленном на изучение понимания сохранения массы, ребенку показывают два одинаковых шарика из пластилина. Форма одного шарика остается неизменной, в то время как другой шарик претерпевает различные превращения него фигуры различных форм, тогда как другой шарик остается в первоначальном виде. Рассмотрим пример, в котором шарик раскатывают и придают ему форму вытянутой сосиски. В силу центрации ребенок может сказать, что в сосиске больше пластилина либо что в ней меньше пластилина, в зависимости от того, к чему—к длине или к высоте — «прицепилось» его внимание. Как и в предыдущем эксперименте, ребенок, пойманный в ловушку «здесь и сейчас», не может осознать обратимость данного процесса. Инвариантность количества и числа. Развитие у детей навыков счета представляет для специалистов большой интерес потому, что на обучение ему в школе отводится значительное время, а также в связи с тем, что цифры и числа играют важную роль в жизни каждого человека. На рис. 7.6 показан классический эксперимент, направленный на изучение понимания сохранения количества и числа. Сначала экспериментатор кладет перед ребенком 12 леденцов, расположив их в два ряда по 6 в каждом; причем леденцы в обоих рядах находятся строго один над другим. Как только ребенок соглашается с тем, что в обоих рядах их количество одинаково, экспериментатор уменьшает длину одного ряда, сдвигая леденцы ближе друг у другу. Из другого ряда убирается один леденец, но расстояние между оставшимися конфетами увеличивается. Если ребенку доступно понятие сохранения количества, он должен признать, что более длинный ряд состоит из меньшего количества леденцов, несмотря на свою протяженность. Детей в возрасте 5-6 лет обманчивый внешний вид длинного ряда часто вводит в заблуждение, и они говорят, что в нем больше леденцов. — 330 —
|