Неоднородная вселенная

Страница: 1 ... 4546474849505152535455 ... 172

Причём, количество «лучей» определяется тем, что в нашем матричном пространстве могут слиться, при образовании, максимально, четырнадцать форм материй данного типа. При этом, мерность возникшего объединения метавселенных равна ? (? = 3,14...). Эта совокупная мерность близка к трём. Именно поэтому возникает шесть «лучей», именно поэтому говорят о трёх измерениях и т.д...

Таким образом, в результате последовательного формирования пространственных структур, образуется балансная система распределения материй между нашим матричным пространством и другими. После завершения формирования Шестилучевика, устойчивое состояние которого возможно только лишь при тождестве между массой притекающих и вытекающих из него материй:

??N(+)dmidi = 6 ???(-)dmidi(2.3.4)

где:

N(+) — центральная область смыкания матричных пространств, через которую материи притекают в наше матричное пространство;

?(-) — «лучевые» зоны смыкания с другим матричным пространством, через которое материи вытекают из нашего матричного пространства;

i — число форм материй, образующих шестилучевик;

mi — масса материй.

Тождество (2.3.4) для всего нашего матричного пространства можно записать в более удобном виде:

??N(+)dmidi - 6 ???(-)dmidi= 0(2.3.5)

Как видно из этой формулы, законы сохранения материи не нарушаются на любом уровне пространственных образований. От микрокосмоса до макрокосмоса они — общие. Единство законов которых следует, хотя бы уже из того, что микрокосмос является структурной базой макрокосмоса. У антишестилучевика циркуляция материи идёт в обратном направлении, от границ этого суперпространства к его центру. Причём, искривление матричного пространства — максимально в граничных областях и минимально в центре этого пространственного образования (Рис. 2.3.12).

Условием устойчивого состояния антишестилучевика является гармония между вытекающими материями через центральную зону смыкания матричных пространств и синтезируемыми в граничных зонах смыкания (внешних) материями данного типа квантования мерности.

Этот баланс можно описать тождеством вида:

??N(-)dmidi = 6 ???(+)dmidi(2.3.6)

где:

N(-) — центральная зона смыкания матричных пространств, через которую материи вытекают из нашего матричного пространства (супераналог — «чёрная дыра»);

?(+) — краевые зоны смыкания матричного пространства, через которые материи притекают в наше матричное пространство;

mi — масса материи данного вида.

Тождество (2.3.6) можно переписать в более удобном для понимания виде:

??N(-)dmidi - 6 ???(+)dmidi = 0(2.3.7)

— 50 —
Страница: 1 ... 4546474849505152535455 ... 172