С возрастом Шакунтали потеряла интерес к умножению как к простому действию и перешла к более сложным. Извлечение квадратного корня из многозначного числа она считает детской забавой и поэтому не утруждает себя этим. Ну а кубический? Шакунтали в восторге, что ей удалось побить калькуляторы и ровно за 2/5 секунды извлечь кубический корень из 332 812 557, равный 693. Много раз она демонстрировала свои способности, каждый раз усложняя задачу. Достаточно было ей только взглянуть на любое число до девяти знаков, как она тут же извлекала корень четвертой степени, практически сразу же она извлекала корень шестой степени из двенадцатизначного числа. Хотя Шакунтали Дэви была настоящим феноменом в области математики, с остальными предметами у нее не все ладилось, и она дважды проваливалась на промежуточном экзамене на степень бакалавра. Как она в уме и так быстро делает сложные вычисления? Шакунтали этого не знает, но она знает, что требуется постоянная тренировка, чтобы не утратить сноровку. У нее есть младшая сестра, у которой в детстве проявлялись задатки математического гения, но отсутствие интереса стоило ей этого дара. В предыдущей книге – «Непонятнее самой науки» – я писал о математике-волшебнике, каким был раб – старый Том Фуллер. Хотя Том был совершенно неграмотным, он тем не менее мог умножать девятизначные числа на числа такого же ряда. Как и мисс Дэви, он это делал как бы интуитивно и почти мгновенно. Среди прочих, обращавшихся к Тому за помощью, был и Джордж Вашингтон, попросивший подсчитать стоимость урожая табака. Другим гением-математиком был уроженец Новой Англии Зира Колберн, выехавший в Лондон в 1814 году в десятилетнем возрасте. Там он давал представления, удивлявшие публику: чуть более минуты понадобилось Колберну, чтобы возвести число 8 в шестнадцатую степень. Ответ оказался правильным – 281 474 976 716 656. Квадратные корни он извлекал моментально, чем немало изумлял ученых мужей Европы. Но, по мере того как он взрослел и получал образование, способности его снижались и в конце концов установились на уровне чуть выше нормального. Жак Иноди, родившийся в 1867 году, оставался неграмотным до 20 лет. Однако в семилетнем возрасте он давал публичные выступления, на которых с успехом извлекал кубические корни и даже корни пятой степени. Ему понадобилось меньше двух секунд, чтобы вычесть из 21-значного числа другое число того же порядка. Иноди отличался от своих коллег – математических уникумов тем, что бубнил что-то себе под нос, когда работал. Он уверял, что не видит ответов, а слышит их, когда говорит сам с собой. — 46 —
|