Крушение парадоксов

Страница: 1 ... 7576777879808182838485 ... 147

При очень больших мощностях картина чрезвычайно усложнялась. Вместо одного узкого канала возникало несколько, а иногда и множество таких нитей. Экспериментаторы ставили удивительные по тонкости замысла и исполнения опыты. Они наблюдали то, что никогда не пришло бы в голову ни Ньютону, ни Фарадею, ни Френелю - королям оптики. В те годы они и не помышляли о том, как глубок океан тайн света. Но современных теоретиков все эти находки экспериментаторов не смутили. В нелинейных средах возможно и не такое. Теория убедительно показала, что уже на ранних стадиях фокусировки исходный пучок может распасться на несколько частей, тяготеющих к различным областям. В статьях замелькало магическое слово "неустойчивость". Действительно, из более точных уравнений следовало, что при очень больших мощностях пучки становятся неустойчивыми и стремятся распасться на отдельные нити. Казалось, все хорошо, но... что же все-таки происходило с пучками там, вблизи точек схлопывания?

Луговой не мог удовлетвориться общепринятым, основанным на опыте представлением о том, что там, безусловно, возникает узкий канал. Его не удовлетворяло это "безусловно", этот постулат, который нужно было принять на веру, как постулат о параллельности в геометрии Эвклида.

Свыше двух тысячелетий на этом постулате строилась геометрия, а затем и физика. До тех пор пока не нашлись люди, отказавшиеся принимать его на веру. Что будет, если отказаться от этого постулата, спросили они себя. Можно ли обойтись без него? Невозможно, ответила строгая математика.

Но, может быть, его можно заменить другим, упорствовали критиканы.

Попробуйте, соглашалась математика.

И они попробовали, Лобачевский и Риман. И создали две новые геометрии. Две неэвклидовы геометрии. Они работали независимо и, конечно, случайно избрали различные из двух существующих возможностей - параллельные линии в бесконечности сходятся или параллельные линии в бесконечности расходятся. Оба варианта столь же правомочны, как постулат Эвклида.

Теперь неэвклидова геометрия - полноправный отдел математики и надежный инструмент физики. Вселенная, изучаемая в огромных масштабах, не может быть описана при помощи эвклидовой геометрии. Вблизи больших масс отклонения от нее заметны и при сравнительно малых расстояниях. Это установил автор теорий относительности Эйнштейн, а затем убедительно подтвердил опыт.

Но если даже чисто геометрический постулат может оказаться лишь особым, частным случаем, то как можно примириться с постулатом в физической теории!

— 80 —
Страница: 1 ... 7576777879808182838485 ... 147