Звезда эта устойчива: силы гравитации огромны, но давление вырожденной нейтронной жидкости еще может уравновесить эти силы. Однако, если масса ядра звезды более трех масс Солнца, силы тяготения выигрывают схватку. Ничто уже не в состоянии противостоять им, гравитационный коллапс здесь неизбежен, и на любой стадии этого коллапса равновесной конфигурации не существует. А это значит, что силы гравитации будут сжимать вещество звезды в состояние с бесконечной плотностью, в точку. Говоря другими словами, некоторые массивные звезды должны в конце своей жизни превратиться в черные дыры. И нейтронные звезды и черные дыры являются релятивистскими объектами — объектами, в окрестности которых особенно выпукло проявляются следствия из общей теории относительности Эйнштейна. Рассмотрим некоторые из них. К примеру, как внешний наблюдатель опишет гравитационный коллапс звезды с образованием черной дыры? Естественно, легче всего наблюдать за изменением светимости звезды. Ясно, что во время коллапса до перехода через шварцшильдовский радиус звезда наблюдаема, и ясно, что число фотонов, которое она испускает, в худшем случае постоянно (или увеличивается). Тем не менее такая звезда погаснет «на глазах у изумленной публики» за доли секунды. «Последний вздох» коллапсирующей звезды очень короток. Казалось бы, это утверждение противоречит тому, что для далекого неподвижного наблюдателя время достижения звездой гравитационного радиуса бесконечно велико. Ну а если это время бесконечно, то и звезда должна была бы светить бесконечно долго. Но это не так. Яркий пример относительности хода времени для внешнего наблюдателя и наблюдателя, «коллапсирующего» вместе со звездой, — это ход времени при наличии сильного гравитационного поля. Свет от коллапсирующей звезды будет катастрофически краснеть при стремлении звезды к горизонту событий. Это вызвано как эффектом Доплера, поскольку поверхность коллапсирующей звезды непрерывно удаляется от нас, так и гравитационным покраснением квантов света. Что такое обычный эффект Доплера, мы с вами знаем. Но что такое гравитационное покраснение, или, точнее, гравитационное красное смещение? Вспомним, что свет сам по себе — следствие различных колебаний в атомах и молекулах, переходов электронов с одного энергетического уровня в атоме на другой. Процессы эти, практически мгновенные в земной практике из-за сверхсильных гравитационных полей, могут показаться внешнему наблюдателю очень медленными. Ведь чем больше промежуток времени между двумя колебаниями, тем больше длина волны и тем меньше частота. Значит, действительно по мере приближения поверхности коллапсирующей звезды к гравитационному радиусу внешней наблюдатель будет видеть звезду, непрерывно изменяющую свой спектр (в сторону все более длинных волн). — 157 —
|